

HIAS Maths Team

Year 8 Autumn Term 2020 Scheme of Learning

An outline plan designed to take account of the national school closures between March 2020 and June 2020.

May 2020 Final version

© Hampshire County Council

www.hants.gov.uk

Introduction

This learning schedule is based on the Hampshire Mathematics Scheme of Learning and is designed to take account of the national school closures between March 2020 and July 2020. Learners will begin a new academic year in need of catch-up and consolidation, together with some new learning from the previous academic year that has been missed. This document focusses on the core skills , knowledge and understanding that an 'on-track' learner would be expected to bring to the next stage of their learning and acknowledges that, for many, the habits of learning and the facility to recall previously embedded knowledge will need attention. For this reason, the first elements of this Autumn Term plan address the end of year objectives from the previous year. As the term progresses, the plan seeks to integrate expected prior learning, previously assumed and now no longer can be, into the standard units from the original scheme. In this way, the aim is to build on what is known and recalled in a moderately accelerated way to help learners get back on track for the end of the 20/21 academic year.

Teachers will need to adapt this schedule to the needs of their learners and to the number of hours study allocated in the timetable to mathematics.

The Hampshire Mathematics team full scheme of learning for KS3 (Y7-Y9) offers long and medium-term maps plus linked units of work with key tasks and teaching points. This is available to schools subscribing to Moodle Plus (for further information, please click <u>here</u>).

Year 8

Week commencing	Unit	Area of study	Objectives	Key teaching points/ facts focus/ 'Big Ideas'	
Thurs 03-09-2020		START OF NEW ACADEMIC YEAR			
Mon 07-09-2020	7.10	Coordinates: Four quadrants	Work with coordinates in all four quadrants	Number lines extend indefinitely from zero in the positive and negative directions	
		Linear functions	Recognise, sketch and produce graphs of linear functions in one variable using equations in x and y in the Cartesian plane	The number line can be represented horizontally (x- axis) or vertically (y-axis) When two number lines intersect at right angles at zero, we create a four quadrant coordinate system that enables us to describe the position of an individual point using the (x,y) notation.	
				The general equation for a straight line is y=mx+c. m describes the gradient, or slop, of the line and c describes the point at which the line intercepts the y-axis (x=0)	
				Parallel lines have the same gradient When generating pairs of coordinates, the y-	
				coordinate is a function of (is dependent on) the x- coordinate according to the equation of the line.	
Mon 14-09-2020	7.12	Statistics: Frequency tables	Describe, interpret and compare observed distribution of a single variable through data sets from	For univariate (one variable) empirical (based on real life scenarios) distributions:	

	hrough easures of central an, median, mode)
diagrams, inc tables, bar ch	interpret bles, charts and uding frequency arts, pictograms for categorical The mode is the most common value. A data set can be bi-modal (with two modes) or multi-model (with multiple modes)
	I interpret verticalThe range is the difference between the largest and the smallest numerical value in the set.
line or bar ch numerical dat	a. Categorical data can be displayed using pictograms and bar charts. The scale or key can be helpful or misleading.
	Categorical data can be collected using a tally chart and then ordered and recorded in a frequency table. This allows the measures of spread and central tendency to be calculated.
	For pie charts:
	$360^{\circ} = 100\% = 1$ whole circle

Mon 21-09-2020	7.13 Geometry: Perimeter, area and Volume	Derive and apply formulae to calculate and solve problems involving perimeter and area of triangles, parallelograms, trapezia, volume of cuboids (including cubes) and other prisms (including cylinders)	 To calculate the percentage required to represent the data, x, from a set of number, n: x/n × 100% To calculate the fraction of the circle for each sector, show the number of degrees as the numerator and 360 as the denominator. Simplify as appropriate Pie charts can show the mode clearly Ungrouped numerical data can be displayed and interpreted using a vertical line graph (or bar chart). It can show measures of central tendency and spread. The perimeter of any closed 2-D shape is the total distance around the outside edges. The area of a rectangle is length x width The area of a triangle is ½ (base x height). It is also half of the surrounding rectangle. The area of a parallelogram is base x perpendicular height
----------------	---	---	--

				The area of a trapezium is the mean average length of the two parallel sides x the perpendicular height (or half the sum of the parallel sides x the distance between them) The volume of a cuboid is length x width x height
				The volume of any prism is the area of the cross- section x length.
Mon 28-09-2020	7.13	Geometry: Perimeter, area and Volume	Calculate and solve problems involving perimeters of 2-D shapes (including circles) ,	The circumference of a circle is calculated as $\pi \ x$ diameter
			areas of circles and composite shapes	The area of a circle is calculated as \pixradius^2
				π is defined as the number of diameters (3.142). It is the ratio of a diameter to its circumference
Mon 05-10-2020	7.15	Y7 Place value and Number:	Understand and use place value for decimals.	Laws of arithmetic and how they apply to integers and decimal numbers
		Fractions, decimals and percentages Y8:	Order positive and negative decimals and fractions	Commutative, distributive and associative laws linked to BIDMAS
		Four operations with fractions	Use the number line as a model for ordering real numbers	Use of informal and formal written methods when calculating with integers and decimals

			Use the symbols =, \neq , < , > , \leq and \geq Work interchangeably with terminating decimals and their corresponding fractions (such as 3.5 and 7/2)	Know and use a range of symbols that denote equality and inequality. Find the lowest common denominator when adding and subtracting fractions
			Use the four operations applied to all real numbers (including proper and improper fractions, and mixed numbers)	Use bar modelling to find fractions and percentage quantities
			Interpret fractions and percentages as operators	
Mon 12-10-2020	8.1	Place value and number: Four operations	Understand and use place value for decimals, measures and integers of any size	Number lines extend indefinitely from zero in the positive and negative directions
		with measure Directed number Primes	Use four operations applied to decimals in the context of measure	Explore the effect of adding/subtracting/multiplying and dividing by a negative number.
				Know or be able to identify primes to 100
			Use four operations applied to positive and negative numbers	Ensure students are secure with x / \div of powers of ten
			Use prime factorisation including using product notation and the unique factorisation	Multiply by using factors rather than by partitioning 27 x 3 = $(9x3) x3 = 9 x (3 x 3) = 9 x 9 = 81$

			 property (every number greater than 1 is either a prime number itself or can be represented as the product of primes. This representation is unique (except for the order of factors) Express numbers as products of primes 	Develop multiplying by factors into prime factorisation (27 x 3 = 9 x 3 x 3 = 3 x 3 x 3 x 3 = 3^4 = 81)
Mon 19-10-2020	7.11 8.2	Geometry: Angles and lines	Apply the properties of angles at a point, on a straight line and vertically opposite angles.	Secure number bonds within 360 (90, 180, 270) Secure parallel, perpendicular and labelling conventions
			Derive and use the sum of the angles in a triangle Use the sum of the angles in a triangle to deduce the angle sum of any polygon	 Know the sum of the angles: round a point is 360° on a straight line is 180° in a right angle is 90° in any triangle is 180° in any quadrilateral is 360 °
			Understand and use the relationship between parallel lines and alternate and corresponding angles.	Derive interior angle size and sum for regular polygons such as pentagon, hexagon and octagon Ensure written and oral reasoning when identifying missing angles
				Know that vertically opposite angles are equal

				Know that alternate angles are equal Know that corresponding angles sum to 180 ⁰
Mon 26-10-2020			HALF TERM	
Mon 02-11-2020	7.11 8.2	Geometry: Property of shape Transformations	Identify properties of, and describe results of, translations, rotations and reflections applied to given figures Derive and illustrate properties of triangles, quadrilaterals, circles and other plane figures (for example, equal lengths and angles) using appropriate language and technology	Know that a square is a special case of all other named quadrilaterals and why. Annotation of diagrams with correct notation and conventions used Know the sum of the angles: • round a point is 360° • on a straight line is 180° • in a right angle is 90° • in any triangle is 180° • in any quadrilateral is 360 ° Reason orally, pictorially and in writing about derived knowledge of shapes.
Mon 09-11-2020	8.3	Probability: Mutually exclusive outcomes	Use the 0-1 probability scale Understand that the probabilities of all possible outcomes sum to 1	Secure equivalence of fractions, decimals and percentages Secure addition and multiplication of fractions in the context probability (i.e. multiply = and / addition = or) Know the contents of a pack of playing cards

			Explore what can and cannot be inferred in probabilistic settings and express argument formally	Ensure that students are secure with the 0-1 number line (link it to 0-10 number bonds and 0-100 bonds for percentage probabilities)
			Introduce sample space diagrams	Carry out probability experiments with two mutually exclusive outcomes to introduce sample spaces (coin toss)
Mon 16-11-2020	8.4	Ratio and proportion: Percentage change	Understand that a multiplicative relationship between two quantities can be expressed as a fraction or a ratio	Use bar models to support an understanding pf percentage change. Identify what is the whole and what are the parts?
			Divide a given quantity into a ratio with more than two parts	Use 'four corners' or the 'box method' as a model to support conversions
			Express the division of a quantity into two or more parts as a ratio using appropriate notation (:)	Encourage students to consider the statement 'for every' when thinking about change and ratio. For example, 'For every £3 I have, you have £8' can be expressed as 3:8 in ratio notation.
			Solve problems involving percentage change including percentage increase, decrease and original value problems and simple interest in financial mathematics.	Use bar models to show % greater than 100%
			Work with percentages greater than 100%	

Mon 23-11-2020	7.14 8.5	Algebra: Y7: Sequences	Generate terms of a sequence either from a term-to-term rule	Pattern spotting
	0.0	Y8: Arithmetic	or a position-to-term rule	Identify multiples and factors
		sequences	Recognise arithmetic sequences and find the nth term	Be able to step count from any number in different sized steps (forward and back)
			Recognise geometric sequences and appreciate other sequences that arise	Recognise an arithmetic sequence is a linear progression and identify the constant difference as the coefficient of 'n', the position of the term
				Sequences can be generated by additive or multiplicative increases or decreases
				Explore other sequences such as Fibonacci and triangular numbers.
Mon 30-11-2020	8.5	Algebra: Linear equations	Simplify and manipulate algebraic expression by taking out common factors	Find factor pairs of numbers up to 50
		Equation of a straight line	Solve linear equations, including	Use bar models to show solving using a balance method and an elimination method
			factorising and rearranging	Know that m represents the gradient and c represents the y-intercept
			Reduce a given linear equation in two variables to the standard form y=mx+c	Know that as m increases the line gets steeper

			Calculate and interpret gradients and intercepts of graphs such as linear equations numerically, graphically and algebraically	Know that as c changes , the line slides up and down the y-axis/grid		
Mon 07-12-2020	7.14 8.5	Algebra: Laws of indices	Use conventional notation for the priority of operations, including brackets, powers, roots and reciprocals Use integer powers and associated real roots	Squaring and cubing numbers and then variables Commutative, distributive and associative laws linked to BIDMAS Laws of indices		
			Recognise powers of 2,3,4 and 5			
Mon 14-12-2020	7.14 8.5	Algebra: Y7: Formulae Y8: Formulae and	Substitute numerical values into formulae and expressions, including scientific formulae.	Laws or arithmetic and how they apply to algebraic conventions		
		rearranging	Simplify and manipulate algebraic expressions to maintain equivalence by	Commutative, distributive and associative laws linked to BIDMAS		
			collecting like terms and multiplying over a bracket	Use bar models to show rearranging and solving equations		
			Use algebraic methods to solve linear equations in one variable, including rearranging			
Mon 21-12-2020		CHRISTMAS				

HIAS Maths Team

Jo Lees – Area Inspector Email: jo.lees@hants.gov.uk

Jacqui Clifft – Area Inspector Email: jacqui.clifft@hants.gov.uk

Jenny Burn – Inspector/Adviser Email: jenny.burn@hants.gov.uk

Tessa Ingrey – Teaching & Learning Adviser (P/T) Email: <u>tessa.ingrey@hants.gov.uk</u>

Natalie Ivey – Inspector/Adviser (P/T) Email: <u>natalie.ivey@hants.gov.uk</u> Dave Parnell – Teaching & Learning Adviser Email: <u>dave.parnell@hants.gov.uk</u>

Rebecca Vickers – Teaching & Learning Adviser Email: <u>rebecca.vickers@hants.gov.uk</u>

Brenda Robertson – Inspector/Adviser Email: <u>brenda.robertson2@hants.gov.uk</u>

Kate Spencer – Teaching & Learning Adviser Email: <u>kathryn.spencer@hants.gov.uk</u>

For further details on the full range of services available please contact us using the following details: Tel: 01962 874820 or email: <u>hias.enquiries@hants.gov.uk</u>

Upcoming Courses

Keep up-to-date with our learning opportunities for each subject through our Upcoming Course pages linked below. To browse the full catalogue of learning offers, visit our new Learning Zone. Full details of how to access the site to make a booking are provided <u>here</u>.

- English
- Maths
- <u>Science</u>
- Geography
- <u>RE</u>
- History
- Leadership
- <u>Computing</u>
- <u>Art</u>
- <u>D&T</u>
- <u>Assessment</u>
- Support Staff
- <u>SEN</u>

Terms and conditions

Terms of licence

Moodle+ subscribers are licenced to access and use this resource and have agreed to pay the annual subscription fee. This authority starts when the fee is paid and ends when the subscription period expired unless it is renewed. This file is for personal or classroom use only. By using it, you agree that you will not copy or reproduce this file except for your own personal, non-commercial use. HIAS have the right to modify the terms of this agreement at any time; the modification will be effective immediately and shall replace all prior agreements.

You are welcome to:

- download this resource
- save this resource on your computer
- print as many copies as you would like to use in your school
- amend this electronic resource so long as you acknowledge its source and do not share as your own work.

You may not:

- · claim this resource as your own
- · sell or in any way profit from this resource
- store or distribute this resource on any other website or another location where others are able to electronically retrieve it
- email this resource to anyone outside your school or transmit it in any other fashion.