

This learning schedule is based on the Hampshire Mathematics Scheme of Learning and is designed to take account of the national school closures between March 2020 and June 2020. Learners will complete one academic year and begin the next in need of catch-up and consolidation, together with some new learning from the previous months that has been missed. This document focusses on the core skills , knowledge and understanding that an 'on-track' learner would be expected to bring to the next stage of their learning and acknowledges that, for many, the habits of learning and the facility to recall previously embedded knowledge will need attention. For this reason, the latter part of the Summer Term focusses on units of work that have not yet been addressed from the Scheme of Learning due to school closures. To facilitate smooth transition and continuity and to provide an opportunity for consolidation, the first elements of this Autumn Term plan address the end of year objectives from the previous year. As the term progresses, the plan seeks to integrate expected prior learning, previously assumed and now no longer can be, into the standard units from the original scheme. In this way, the aim is to build on what is known and recalled in a moderately accelerated way to help learners get back on track for the end of the 20/21 academic year.

Teachers will need to adapt this schedule to the needs of their learners and to the number of hours study allocated in the timetable to mathematics.

The Hampshire Mathematics team full scheme of learning for KS1, 2 and 3 (Y1-Y9) offers long and medium-term maps plus linked units of work with key tasks and teaching points. This is available to schools subscribing to the Moodle Plus

## https://maths.hias.hants.gov.uk/

The KS4 scheme of learning will be the GCSE schedule from a school's chosen examination board. This overview is developed using a blend of the threeyear and two- year GCSE planning from AQA and Edexcel, taking gaps in learning and experience from missed lessons in Y9 into account. KS3 objectives are in black and any <u>new</u> KS4 objectives are in blue. It should be noted that there is considerable overlap with KS3 and the foundation tier objectives.

The use of past GCSE questions, initially at foundation level, will provide familiarisation and pitch for students and it is recommended that these resources from your exam board should be used as anchor questions to provide a secure start to a lesson as appropriate.

There is no distinction is this overview plan between foundation and higher tier topics.

It is not expected that all students will require, or cover, all suggested content.

It is for teachers to select from the schedule for individual students and groups of students as appropriate.



| Week commencing | Unit | Area of study                               | Objectives                                                                                                                                                                                                                            | Key teaching points/ facts focus/ 'Big Ideas'                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------|------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mon 25-05-2020  |      |                                             | HALF TERM                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mon 01-06-2020  | 9.0  | Number and<br>calculation                   | Select and use appropriate calculation<br>strategies to solve problems<br>Use the four operations, including<br>formal written methods, applied to<br>integers, decimals and fractions                                                | Review and practise basic arithmetic.<br>Use contextual and real-life scenarios and encourage<br>the use of visual diagrams to represent problems<br>alongside calculations<br>Ensure students can represent numbers as fractions,<br>decimals and percentages and are able to use the<br>concept of equivalence effectively.                                                                                                                                                                                           |
| Mon 08-06-2020  | 9.13 | Number<br>Powers and roots<br>Standard form | Use integer powers and roots to solve<br>problems<br>Represent numbers in prime factor form<br>Introduce fractional and negative<br>powers<br>Calculate and solve problems involving<br>numbers in both ordinary and standard<br>form | Review and practise representing numbers in prime<br>factor form, establishing that students know the<br>prime numbers up to 100<br>Ensure students know or can derive square and cube<br>numbers and associated roots<br>Explore roots and fractional powers<br>Explore negative powers / reciprocals<br>Link work on indices to standard form representation<br>Use 'the size of the solar system/world' type activity<br>to explore using standard form (multiplying, dividing,<br>converting from ordinary numbers) |



|                |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                              | Show in full x10 x100 x1000 etc to show where the<br>index number comes from. Link with science<br>department including use of prefixes e.g. kilo, mega,<br>giga, terra, milli, micro, nano<br>Use Gattegno charts to support multiplying and<br>dividing by powers of ten.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mon 15-06-2020 | 9.13 | Number<br>Accuracy | <ul> <li>Apply appropriate calculation strategies and degrees of accuracy to increasingly complex problems</li> <li>Round numbers and measures to an appropriate degree of accuracy [for example, to a number of decimal places or significant figures].</li> <li>Use approximation through rounding to estimate answers and calculate possible resulting errors expressed using inequality notation a ≤ x &lt; b</li> </ul> | Revise and practise approximations to calculations<br>using rounding and significant figures. Discuss and<br>compare when it is appropriate to use these<br>representations.<br>Start with More or Less from Nrich:<br>https://nrich.maths.org/6145 which explores<br>whether estimates of physical quantities are<br>accurate?<br>NCETM Teaching for Mastery document,<br>https://www.ncetm.org.uk/news/51079 includes:<br>The population in England is 53 million, rounded to<br>the nearest million. – What is the largest that the<br>population could be? – What is the smallest that the<br>population could be? – Explain how you decided.<br>Then onto a more traditional approach for resulting<br>errors using Rough Rectangle:<br>https://nrich.maths.org/13715<br>Ensure you have examples/formula that involve<br>division_exploring the 4 possible answers based on |
|                |      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                              | the upper and lower bounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| Mon 22-06-2020 | 9.11 | Algebra    | Work with all four guadrants               | Ensure that students are secure with the general             |
|----------------|------|------------|--------------------------------------------|--------------------------------------------------------------|
|                |      | Graphs and |                                            | forms of a straight line ( $v=mx+c$ ) and a quadratic        |
|                |      | Functions  | Model situations or procedures by          | function ( $v = ax^2 + bx + c$ ) and can generate a table of |
|                |      |            | translating them into algebraic            | values from which to plot graphs                             |
|                |      |            | expressions or formulae and by using       |                                                              |
|                |      |            | graphs.                                    | We use piecewise functions to describe situations in         |
|                |      |            | 0 P                                        | which a rule or relationship changes as the input            |
|                |      |            | Recognise, sketch and produce graphs of    | value crosses certain "boundaries."                          |
|                |      |            | linear and guadratic functions in one      |                                                              |
|                |      |            | variable.                                  | Give students the opportunity to consider real life          |
|                |      |            |                                            | graphs discussing the context and asking 'What do            |
|                |      |            | Find contextual approximate solutions      | you notice? What do you wonder?'                             |
|                |      |            | to problems from the given graphs of a     | ,                                                            |
|                |      |            | variety of functions, including piece-wise | Introduce exponential and reciprocal graphs as               |
|                |      |            | linear. exponential and reciprocal         | appropriate.                                                 |
|                |      |            | graphs.                                    |                                                              |
|                |      |            | 0.01.000                                   |                                                              |
|                |      |            |                                            |                                                              |
| Mon 29-06-2020 | 9.12 | Pythagoras | Use Pythagoras' Theorem in similar         | Practise squaring and square rooting different               |
|                |      |            | triangles to solve problems involving      | numbers with a calculator. Discuss when it is                |
|                |      |            | right-angled triangles                     | appropriate to round an answer and what impact that          |
|                |      |            |                                            | will have on the accuracy of the final solution.             |
|                |      |            | Reason deductively in geometry             |                                                              |
|                |      |            |                                            | Ensure students know and can use Pythagoras'                 |
|                |      |            | Apply elementary knowledge to multi-       | Theorem to find missing sides in right-angled                |
|                |      |            | step ad increasingly sophisticated         | triangles.                                                   |
|                |      |            | problems.                                  |                                                              |
|                |      |            |                                            | Solve contextual problems to find missing lengths.           |
|                |      |            | Introduce Pythagoras' Theorem in 3-D       | Including 3-D work as appropriate.                           |
|                |      |            |                                            |                                                              |
|                |      |            |                                            |                                                              |
|                |      |            |                                            |                                                              |
|                | 1    |            |                                            |                                                              |



| Mon 06-07-2020 | 9.12 | Trigonometry | Use trigonometric ratios in similar<br>triangles to solve problems involving<br>right-angled triangles<br>Introduce trigonometric function graphs<br>(y=sin x ; y=cos x; y = tan x)<br>Introduce exact trigonometric values<br>using a right-angled isosceles triangle<br>and an equilateral triangle | Revisit SoH CaH ToA<br>Ensure students are able to find missing sides and<br>angles using sine, cosine and tangent functions in<br>right angled triangles<br>Explore trig values using a calculator and use this to<br>construct the three graphs<br>As appropriate, model how to find exact values using<br>triangles.                                                                                                                                                                                                                                                                                                                      |
|----------------|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mon 13-07-2020 | 9.14 | Probability  | Enumerate sets and unions /<br>intersections of sets systematically,<br>using tables, grids and Venn diagrams<br>Solve probability problems and calculate<br>theoretical probabilities using sample<br>space and tree diagrams for mutually<br>exclusive and independent events                       | Ensure students can use the notation for Venn<br>diagrams. Spend time working through questions<br>where the information is presented in tables and<br>Venn diagrams including finding the probability of an<br>event. Further challenges can be found at<br>mathsvenns.com.<br>Review theoretical probability and discuss the<br>connection between the number of trials and<br>experimental probability outcomes.<br>Work on questions that involve drawing sample space<br>and simple tree diagrams from given examples. Solve<br>probabilities for mutually exclusive and independent<br>events, sing every day contexts where possible. |
| Mon 20-07-2020 |      | ·            | SUMMER HOLIDAY COMMENCES TH                                                                                                                                                                                                                                                                           | URS 23-07-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



| Week commencing       | Area of study           | Objectives                                                                 | Key teaching points/ facts focus/ 'Big Ideas'            |
|-----------------------|-------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|
| Use past GCS          | E questions as starters | or anchor tasks to build a lesson around so th                             | at students become familiar with appropriate format,     |
| pitch and expectation | ns. Ensure that you mod | el answers and use a variation of the original                             | problem to build confidence and understanding.           |
| Thurs 03-09-2020      |                         | START OF NEW ACAD                                                          | EMIC YEAR                                                |
| Mon 07-09-2020        | Measure:                | Change freely between standard units                                       | Use visual models such as 'four corners' (the box        |
|                       | Ratio and               | such as time, length, area,                                                | method) to support conversion between units              |
|                       | proportion              | volume/capacity and mass.                                                  |                                                          |
|                       | Compound units          |                                                                            |                                                          |
|                       |                         | Use compound units such as density to                                      | Density = mass / volume                                  |
|                       |                         | solve problems                                                             | Speed = distance / time                                  |
|                       |                         |                                                                            | Pressure = force / area                                  |
|                       |                         | Convert between related compound                                           |                                                          |
|                       |                         | units (speed, rates of pay, prices,                                        | Develop understanding of the multiplicative              |
|                       |                         | density, pressure) in numerical and                                        | relationships to support efficient strategies, including |
|                       |                         | algebraic contexts                                                         | using an inverse and rearranging formulae.               |
|                       |                         |                                                                            |                                                          |
| Mon 14-09-2020        | Number:                 | Use approximation through rounding to                                      | Review fluency with conversion between ordinary          |
|                       | Approximation           | estimate answers and calculate possible                                    | and standard form                                        |
|                       | Accuracy                | resulting errors using inequality notation                                 |                                                          |
|                       | Standard Form           | a≤x <b< th=""><th>Calculate areas and round to a given number of</th></b<> | Calculate areas and round to a given number of           |
|                       |                         |                                                                            | decimal places and significant figures                   |
|                       |                         | Apply appropriate calculation strategies                                   |                                                          |
|                       |                         | and degrees of accuracy to increasingly                                    | Model a length 'to the nearest' and show how             |
|                       |                         | complex problems                                                           | knowledge of rounding helps us to decide to go half a    |
|                       |                         |                                                                            | unit either side of the given value (up to but not       |
|                       |                         | Calculate and solve problems involving                                     | including the uppermost bound)                           |
|                       |                         | numbers in both ordinary and standard                                      |                                                          |
|                       |                         | form.                                                                      | Contextual word problems to introduce min/max            |
|                       |                         |                                                                            | area of a rectangle and then develop into more           |
|                       |                         |                                                                            | complex shapes. Allow students to find all               |
|                       |                         |                                                                            | possibilities rather than directing them to max/min      |
|                       |                         |                                                                            | values                                                   |



|                |                 | Apply and interpret limits of accuracy     | Ensure examples/formula that involve division,                       |
|----------------|-----------------|--------------------------------------------|----------------------------------------------------------------------|
|                |                 | when rounding or truncating {including     | exploring the 4 possible answers based on the upper                  |
|                |                 | upper and lower bounds}                    | and lower bounds                                                     |
|                |                 |                                            |                                                                      |
| Mon 21-09-2020 | Geometry:       | Use Pythagoras' Theorem in right-angled    | Revise Pythagoras' Theorem and explore a range of                    |
|                | Pythagoras      | triangles to solve problems                | geometric and algebraic proofs and demonstrations.                   |
|                |                 |                                            | Use technology to model dynamic versions of this.                    |
|                |                 | Use trigonometric ratios in right-angled   |                                                                      |
|                |                 | triangles to solve problems                | Solve a range of abstract and real-life problems using               |
|                |                 |                                            | Pythagoras' Theorem including in 3-D as appropriate                  |
|                |                 |                                            |                                                                      |
|                |                 |                                            | Revise trigonometric ratios and the use of                           |
|                |                 |                                            | SoHCaHToA in right-angled triangles to find missing                  |
|                |                 |                                            | angles and sides if this has been covered in Y9.                     |
|                |                 |                                            |                                                                      |
|                |                 |                                            | For some students, this may be an introduction, in                   |
|                |                 |                                            | which case spend more time exploring the                             |
|                |                 |                                            | relationship between the ratios of the sides and how                 |
|                |                 |                                            | this links to the angles before introducing sine, cosine             |
|                |                 |                                            | and tangent ratios.                                                  |
|                |                 |                                            |                                                                      |
|                |                 |                                            | Solve a range of abstract and real-life problems using               |
|                |                 |                                            | right-angled triangles                                               |
| Mon 28-09-2020 | Geometry:       | Identify and apply circle definitions and  | Revise vocabulary associated with circles and                        |
|                | Circles         | properties, including centre, radius,      | introduce any new words (sector/segment/chord)                       |
|                | Circle Theorems | chord, diameter, circumference, tangent,   |                                                                      |
|                |                 | arc, sector and segment.                   | Explore circle theorems:                                             |
|                |                 |                                            | <ul> <li>Angle at the centre is twice the angle</li> </ul>           |
|                |                 | Calculate arc lengths, angles and areas of | subtended at the circumference                                       |
|                |                 | sectors of circles                         | <ul> <li>Angle in a semi-circle is a right angle (special</li> </ul> |
|                |                 |                                            | case of angle at the centre)                                         |
|                |                 |                                            | <ul> <li>Angles in the same segment are equal</li> </ul>             |



|                                                   | Apply and prove the standard circle<br>theorems concerning angles, radii,<br>tangents and chords, and use them to<br>prove related results                                                                                                                                                                                                                                                                                                                  | <ul> <li>Cyclic quadrilaterals (opposite angels sum to 180°)</li> <li>Radius to a tangent</li> <li>Tangents from a point to a circle</li> <li>Alternate segment</li> </ul> Integrate theorems with proof and problem solving to build up competency gradually                                                                                                                                                                                                                                              |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constructions<br>Plans and elevations<br>Bearings | <ul> <li>compass constructions <ul> <li>Perpendicular bisector of a line segment of a given line</li> <li>Constructing a perpendicular bisector at a given point</li> <li>Bisecting a given angle</li> <li>Triangles given three side lengths</li> </ul> </li> <li>Recognise and use the perpendicular distance from a point to a line as the shortest distance to the line.</li> <li>Construct and interpret plans and planetices of 2 D phages</li> </ul> | <ul> <li>bisectors and angles</li> <li>Explore the construction of a kite using geometric reasoning about the diagonals</li> <li>Solve a range of abstract and real-life problems that involve geometric constructions.</li> <li>Ensure that conventions for labelling angles, sides, equality and parallel are used consistently and accurately.</li> <li>Use both 180° and 360° protractors to solve problems involving bearings.</li> <li>Ensure students are clear on how the points of the</li> </ul> |
|                                                   | elevations of 3-D shapes<br>Interpret and use bearings                                                                                                                                                                                                                                                                                                                                                                                                      | compass link to bearings and that the 'North' line is<br>always the starting point at 0°                                                                                                                                                                                                                                                                                                                                                                                                                   |



| Mon 12-10-2020 | Algebra:         | Find contextual approximate solutions      | Let students consider real-life scenarios represented |
|----------------|------------------|--------------------------------------------|-------------------------------------------------------|
|                | Functions and    | to problems from the given graphs of a     | as graphs and ask them to describe the 'story' of the |
|                | graphs           | variety of functions, including piece-wise | graph.                                                |
|                | 0 1              | linear, exponential and reciprocal graphs  |                                                       |
|                |                  | ······                                     | Use piece-wise functions to describe situations in    |
|                |                  | Solve problems involving functions and     | which a rule or relationship changes as the input     |
|                |                  | graphs. Move fluently between different    | value crosses defined boundaries                      |
|                |                  | mathematical representations including     |                                                       |
|                |                  | algebra granhs and diagrams                | Interpret the gradient and the v-intercent in the     |
|                |                  |                                            | context of the problem                                |
|                |                  | Model real-life situations by translating  | context of the problem.                               |
|                |                  | them into functions and granhs             |                                                       |
|                |                  | them into functions and graphs             |                                                       |
|                |                  | Interpret and construct tables and line    |                                                       |
|                |                  | graphs for time series data                |                                                       |
|                |                  | graphs for time series data                |                                                       |
|                |                  | Interpret the gradient of a straight line  |                                                       |
|                |                  | graph as a rate of change, recognise and   |                                                       |
|                |                  | interpret graphs that illustrate direct    |                                                       |
|                |                  | and inverse proportion                     |                                                       |
| Mon 19-10-2020 | Number:          | Apply appropriate calculation strategies   | Explore the equivalence of roots and fractional       |
|                | Integers, powers | and degrees of accuracy to increasingly    | powers                                                |
|                | and roots        | complex problems                           |                                                       |
|                |                  |                                            | Explore the relationship between reciprocals and      |
|                |                  | Use integer powers and roots to solve      | negative powers                                       |
|                |                  | problems                                   |                                                       |
|                |                  |                                            | Ensure $a^0 = 1$ is embedded.                         |
|                |                  | Use fractional and negative powers and     | Use Gattegno charts to support understanding          |
|                |                  | roots to solve problems                    | Use conventional notation for recording powers and    |
|                |                  |                                            | roots.                                                |



|                 | Geometry:       | Calculate surface areas and volumes of                                                                                                                                                                                                                                                                                            | Although it is not required to memorise all shape                              |
|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                 | Area and volume | calculate surface areas and composite                                                                                                                                                                                                                                                                                             | formulae, it is useful to gain familiarity with them and                       |
|                 | Area and volume | spheres, pyramids, cones and composite                                                                                                                                                                                                                                                                                            | ionnulae, it is useful to gain familiantly with them and                       |
|                 |                 | solias.                                                                                                                                                                                                                                                                                                                           | ensure that students can rearrange and substitute                              |
|                 |                 |                                                                                                                                                                                                                                                                                                                                   | accurately into formulae                                                       |
|                 |                 | Apply the concepts of congruence and                                                                                                                                                                                                                                                                                              |                                                                                |
|                 |                 | similarity, including the relationships                                                                                                                                                                                                                                                                                           | Link similarity to enlargement                                                 |
|                 |                 | between lengths, areas and volumes in                                                                                                                                                                                                                                                                                             |                                                                                |
|                 |                 | similar figures.                                                                                                                                                                                                                                                                                                                  | Ensure that it is known that:                                                  |
|                 |                 |                                                                                                                                                                                                                                                                                                                                   | • ASF = $(LSF)^2$                                                              |
|                 |                 | Compare lengths, areas and volumes                                                                                                                                                                                                                                                                                                | <ul> <li>VSF = (LSF)<sup>3</sup></li> </ul>                                    |
|                 |                 | using ratio notation and/or scale factors;                                                                                                                                                                                                                                                                                        |                                                                                |
|                 |                 | make links to similarity                                                                                                                                                                                                                                                                                                          | Explore this idea in the context of lines, squares and                         |
|                 |                 |                                                                                                                                                                                                                                                                                                                                   | cubes and allow students to build models to satisfy                            |
|                 |                 |                                                                                                                                                                                                                                                                                                                                   | themselves that the scale factor relationship is                               |
|                 |                 |                                                                                                                                                                                                                                                                                                                                   | proportional                                                                   |
| Mon 26-10-2020  |                 | HALETERM                                                                                                                                                                                                                                                                                                                          |                                                                                |
| 1011 20-10-2020 |                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                |
| Mon 02-11-2020  | Probability     | Enumerate sets and                                                                                                                                                                                                                                                                                                                | Review notation for Venn diagrams                                              |
|                 |                 | unions/intersections of sets                                                                                                                                                                                                                                                                                                      |                                                                                |
|                 |                 | systematically, using tables, grids and                                                                                                                                                                                                                                                                                           | Ensure that the connection between experimental                                |
|                 |                 | Venn diagrams                                                                                                                                                                                                                                                                                                                     | and theoretical probability is understood in terms of                          |
|                 |                 |                                                                                                                                                                                                                                                                                                                                   | the number of trials.                                                          |
|                 |                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                |
|                 |                 | Apply the property that the probabilities                                                                                                                                                                                                                                                                                         |                                                                                |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually                                                                                                                                                                                                                                                     | Construct sample space diagrams and tree diagrams                              |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually<br>exclusive events sum to one.                                                                                                                                                                                                                     | Construct sample space diagrams and tree diagrams using theoretical scenarios. |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually<br>exclusive events sum to one.                                                                                                                                                                                                                     | Construct sample space diagrams and tree diagrams using theoretical scenarios. |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually<br>exclusive events sum to one.<br>Use a probability model to predict the                                                                                                                                                                           | Construct sample space diagrams and tree diagrams using theoretical scenarios. |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually<br>exclusive events sum to one.<br>Use a probability model to predict the<br>outcomes of future experiments:                                                                                                                                        | Construct sample space diagrams and tree diagrams using theoretical scenarios. |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually<br>exclusive events sum to one.<br>Use a probability model to predict the<br>outcomes of future experiments;<br>understand that empirical unbiased                                                                                                  | Construct sample space diagrams and tree diagrams using theoretical scenarios. |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually<br>exclusive events sum to one.<br>Use a probability model to predict the<br>outcomes of future experiments;<br>understand that empirical unbiased<br>samples tend towards theoretical                                                              | Construct sample space diagrams and tree diagrams using theoretical scenarios. |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually<br>exclusive events sum to one.<br>Use a probability model to predict the<br>outcomes of future experiments;<br>understand that empirical unbiased<br>samples tend towards theoretical<br>probability distributions with increasing                 | Construct sample space diagrams and tree diagrams using theoretical scenarios. |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually<br>exclusive events sum to one.<br>Use a probability model to predict the<br>outcomes of future experiments;<br>understand that empirical unbiased<br>samples tend towards theoretical<br>probability distributions, with increasing<br>sample size | Construct sample space diagrams and tree diagrams using theoretical scenarios. |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually<br>exclusive events sum to one.<br>Use a probability model to predict the<br>outcomes of future experiments;<br>understand that empirical unbiased<br>samples tend towards theoretical<br>probability distributions, with increasing<br>sample size | Construct sample space diagrams and tree diagrams using theoretical scenarios. |
|                 |                 | Apply the property that the probabilities<br>of an exhaustive set of mutually<br>exclusive events sum to one.<br>Use a probability model to predict the<br>outcomes of future experiments;<br>understand that empirical unbiased<br>samples tend towards theoretical<br>probability distributions, with increasing<br>sample size | Construct sample space diagrams and tree diagrams using theoretical scenarios. |



|                |                                                     | Calculate the probability of independent<br>and dependent combined events,<br>including tree diagrams and other<br>representations, and know the<br>underlying assumptions<br>Calculate and interpret conditional<br>probabilities through representation<br>using expected frequencies with two-<br>way tables, tree diagrams and Venn<br>diagrams                                                                                                                                     | Solve probability problems involving mutually<br>exclusive and independent events.<br>Introduce conditional probability and support<br>understanding using tree diagrams to demonstrate<br>how the probabilities change.                                                                                                                                                             |
|----------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mon 09-11-2020 | Statistics:<br>Averages, charts and<br>calculations | <ul> <li>Describe, interpret and compare measures of central tendency and spread</li> <li>Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: <ul> <li>Appropriate graphical representation involving discrete, continuous and grouped data (including box plots)</li> <li>Appropriate measures of central tendency (including modal class) and spread (including quartiles and inter-quartile range)</li> </ul> </li> </ul> | Know when it is appropriate to group data<br>Distinguish between categorical and numerical data<br>Explore the same data represented on different<br>charts or with different scales and discuss which is<br>best and why<br>Calculate and interpret mean, median, mode and<br>quartiles for different data sets<br>Calculate and interpret range and IQR for different<br>data sets |



| Mon 16-11-2020    | Statistics:      | Construct and interpret tables charts               | Model how to order data to construct the stem and       |
|-------------------|------------------|-----------------------------------------------------|---------------------------------------------------------|
| 141011 10-11-2020 | Statistics.      | and diagrams including stom and loof                | leaf diagram including the use of the key               |
|                   | froquency tables | diagrams and frequency tables                       | iear ulagrann, including the use of the key.            |
|                   | Frequency tables | diagrams and frequency tables                       | Lies this to identify measures of control tog day or    |
|                   | Scatter graphs   | Internet contraction and commons the                | Use this to identify measures of central tendency       |
|                   |                  | Interpret, analyse and compare the                  | including quartiles                                     |
|                   |                  | distributions of data sets from univariate          |                                                         |
|                   |                  | empirical distributions through:                    | Construct box plots and compare distributions using     |
|                   |                  | Appropriate graphical                               | box plots                                               |
|                   |                  | representation involving                            |                                                         |
|                   |                  | discrete, continuous and                            | Interpret scatter diagrams in the context of their      |
|                   |                  | grouped data (including box                         | correlation, ensuring that students can use the line of |
|                   |                  | plots)                                              | best fit to predict data points within the current      |
|                   |                  | <ul> <li>Appropriate measures of central</li> </ul> | range and beyond.                                       |
|                   |                  | tendency (including modal class)                    |                                                         |
|                   |                  | and spread (including quartiles                     |                                                         |
|                   |                  | and inter-quartile range)                           |                                                         |
|                   |                  |                                                     |                                                         |
|                   |                  | Use and interpret scatter graphs of                 |                                                         |
|                   |                  | bivariate data; recognise correlation and           |                                                         |
|                   |                  | know that it does not indicate causation;           |                                                         |
|                   |                  | draw estimated lines of best fit; make              |                                                         |
|                   |                  | predictions; interpolate and extrapolate            |                                                         |
|                   |                  | apparent trends whilst know the                     |                                                         |
|                   |                  | dangers of doing so.                                |                                                         |
|                   |                  |                                                     |                                                         |
|                   |                  |                                                     |                                                         |
| Mon 23-11-2020    | Algebra:         | Substitute numerical values into                    | Use the grid method to factorise linear equations and   |
|                   | Factorising,     | formulae and expressions, including                 | bar modelling to solve equations with unknowns on       |
|                   | expanding and    | scientific formulae                                 | both sides for those students who are not yet secure    |
|                   | manipulation     |                                                     | with these procedures.                                  |
|                   |                  | Understand and use the concepts and                 |                                                         |
|                   |                  | vocabulary of expressions, equations,               |                                                         |
|                   |                  | inequalities, terms and factors                     |                                                         |



|                |                 | Simplify and manipulate algebraic                                                                                                                                                                                                                                                      | Use algebra tiles to simplify and manipulate algebraic                                                                                                                                                                                                  |
|----------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                 | expression to maintain equivalence by:                                                                                                                                                                                                                                                 | expressions and equations.                                                                                                                                                                                                                              |
|                |                 | <ul> <li>Collecting like terms</li> </ul>                                                                                                                                                                                                                                              | (www.ncetm.org.uk/resources/53609)                                                                                                                                                                                                                      |
|                |                 | <ul> <li>Multiplying a single term over a</li> </ul>                                                                                                                                                                                                                                   | Use this idea to substitute into formulae and                                                                                                                                                                                                           |
|                |                 | bracket                                                                                                                                                                                                                                                                                | expressions.                                                                                                                                                                                                                                            |
|                |                 | Taking out a common factor                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                         |
|                |                 | <ul> <li>Expanding two or more</li> </ul>                                                                                                                                                                                                                                              | Problem-solve using compound measure formulae                                                                                                                                                                                                           |
|                |                 | binomials                                                                                                                                                                                                                                                                              | that need to be rearranged (since this always comes                                                                                                                                                                                                     |
|                |                 |                                                                                                                                                                                                                                                                                        | up in GCSE!) such as density= mass/volume and                                                                                                                                                                                                           |
|                |                 | Rearrange formulae to change the                                                                                                                                                                                                                                                       | pressure = force/area                                                                                                                                                                                                                                   |
|                |                 | subject                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |
|                |                 |                                                                                                                                                                                                                                                                                        | Review arithmetic with negative number and apply to                                                                                                                                                                                                     |
|                |                 | Model situations or procedures by                                                                                                                                                                                                                                                      | algebraic arithmetic                                                                                                                                                                                                                                    |
|                |                 | translating them into algebraic                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |
|                |                 | expressions or formulae                                                                                                                                                                                                                                                                | Review BIDMAS when substituting into formulae                                                                                                                                                                                                           |
| Mon 30-11-2020 | Transformations | Identify properties of, and describe the                                                                                                                                                                                                                                               | Ensure that students can describe transformations                                                                                                                                                                                                       |
|                |                 | results of translations, rotations,                                                                                                                                                                                                                                                    | accurately                                                                                                                                                                                                                                              |
|                |                 | rofloctions and onlargoments (with                                                                                                                                                                                                                                                     | (aquation of line of reflection, contro/angle and                                                                                                                                                                                                       |
|                |                 | renections and emargements (with                                                                                                                                                                                                                                                       | (equation of line of reflection; centre/angle and                                                                                                                                                                                                       |
|                |                 | integer scale factors) applied to given                                                                                                                                                                                                                                                | direction of rotation; centre/ scale factor of                                                                                                                                                                                                          |
|                |                 | integer scale factors) applied to given figures                                                                                                                                                                                                                                        | direction of rotation; centre/ scale factor of<br>enlargement; direction of translation either in words                                                                                                                                                 |
|                |                 | integer scale factors) applied to given<br>figures                                                                                                                                                                                                                                     | direction of rotation; centre/ scale factor of<br>enlargement; direction of translation either in words<br>or with vectors as appropriate)                                                                                                              |
|                |                 | integer scale factors) applied to given<br>figures                                                                                                                                                                                                                                     | direction of rotation; centre/ scale factor of<br>enlargement; direction of translation either in words<br>or with vectors as appropriate)                                                                                                              |
|                |                 | integer scale factors) applied to given<br>figures<br>Interpret and use fractional and negative<br>scale factors for enlargements                                                                                                                                                      | direction of rotation; centre/ scale factor of<br>enlargement; direction of translation either in words<br>or with vectors as appropriate)<br>Explore the effect of enlarging by negative and                                                           |
|                |                 | integer scale factors) applied to given<br>figures<br>Interpret and use fractional and negative<br>scale factors for enlargements                                                                                                                                                      | direction of rotation; centre/ scale factor of<br>enlargement; direction of translation either in words<br>or with vectors as appropriate)<br>Explore the effect of enlarging by negative and<br>fractional scale factors.                              |
|                |                 | integer scale factors) applied to given<br>figures<br>Interpret and use fractional and negative<br>scale factors for enlargements<br>Describe the changes and invariance                                                                                                               | direction of rotation; centre/ scale factor of<br>enlargement; direction of translation either in words<br>or with vectors as appropriate)<br>Explore the effect of enlarging by negative and<br>fractional scale factors.                              |
|                |                 | integer scale factors) applied to given<br>figures<br>Interpret and use fractional and negative<br>scale factors for enlargements<br>Describe the changes and invariance<br>achieved by combinations of rotations,                                                                     | direction of rotation; centre/ scale factor of<br>enlargement; direction of translation either in words<br>or with vectors as appropriate)<br>Explore the effect of enlarging by negative and<br>fractional scale factors.                              |
|                |                 | integer scale factors) applied to given<br>figures<br>Interpret and use fractional and negative<br>scale factors for enlargements<br>Describe the changes and invariance<br>achieved by combinations of rotations,<br>reflections and translations                                     | direction of rotation; centre/ scale factor of<br>enlargement; direction of translation either in words<br>or with vectors as appropriate)<br>Explore the effect of enlarging by negative and<br>fractional scale factors.                              |
|                |                 | integer scale factors) applied to given<br>figures<br>Interpret and use fractional and negative<br>scale factors for enlargements<br>Describe the changes and invariance<br>achieved by combinations of rotations,<br>reflections and translations                                     | <ul> <li>direction of rotation; centre/ scale factor of<br/>enlargement; direction of translation either in words<br/>or with vectors as appropriate)</li> <li>Explore the effect of enlarging by negative and<br/>fractional scale factors.</li> </ul> |
|                |                 | integer scale factors) applied to given<br>figures<br>Interpret and use fractional and negative<br>scale factors for enlargements<br>Describe the changes and invariance<br>achieved by combinations of rotations,<br>reflections and translations<br>Describe translations as vectors | <ul> <li>direction of rotation; centre/ scale factor of<br/>enlargement; direction of translation either in words<br/>or with vectors as appropriate)</li> <li>Explore the effect of enlarging by negative and<br/>fractional scale factors.</li> </ul> |
|                |                 | integer scale factors) applied to given<br>figures<br>Interpret and use fractional and negative<br>scale factors for enlargements<br>Describe the changes and invariance<br>achieved by combinations of rotations,<br>reflections and translations<br>Describe translations as vectors | <ul> <li>direction of rotation; centre/ scale factor of<br/>enlargement; direction of translation either in words<br/>or with vectors as appropriate)</li> <li>Explore the effect of enlarging by negative and<br/>fractional scale factors.</li> </ul> |



| Mon 07-12-2020 | Statistics<br>Sampling<br>Cumulative<br>frequency<br>Histograms | <ul> <li>Infer properties of populations or<br/>distributions from a sample, whilst<br/>knowing the limitations of sampling</li> <li>Construct and interpret diagrams for<br/>grouped discrete and continuous data<br/>i.e. histograms with equal and unequal<br/>class intervals and cumulative frequency<br/>graphs, and know their appropriate use</li> <li>Interpret, analyse and compare the<br/>distributions of data sets from univariate<br/>empirical distributions through: <ul> <li>Appropriate graphical<br/>representation involving<br/>discrete, continuous and<br/>grouped data (including box<br/>plots)</li> <li>Appropriate measures of central<br/>tendency(including modal class)<br/>and spread (including quartiles<br/>and inter-quartile range)</li> </ul> </li> </ul> | Explore sampling a population in different ways and<br>discuss how to make it as fair and representative as<br>possible.<br>For higher tier students, offer histograms with<br>unequal class sizes where the frequency density scale<br>is not given. Introduce 'counting squares' as an initial<br>strategy for establishing the vertical (fd) scale |
|----------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mon 14-12-2020 | Vectors                                                         | Apply addition and subtraction of<br>vectors, multiplication of vectors by a<br>scalar, and diagrammatic and column<br>representations of vectors<br>Use vectors to construct geometric<br>arguments and proofs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Model with diagrams, the effect of adding and<br>subtracting two vectors and of multiplying a vector by<br>a scalar<br>Introduce vectors that are not on a coordinate grid,<br>but rather describe a 'journey' (could be around a<br>shape such as a regular hexagon). Explore simple<br>arguments and proofs.                                        |
| Mon 21-12-2020 | CHRISTMAS                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                       |