

This learning schedule is based on the Hampshire Mathematics Scheme of Learning and is designed to take account of the national school closures between March 2020 and June 2020. Learners will complete one academic year and begin the next in need of catch-up and consolidation, together with some new learning from the previous months that has been missed. This document focusses on the core skills, knowledge and understanding that an 'on-track' learner would be expected to bring to the next stage of their learning and acknowledges that, for many, the habits of learning and the facility to recall previously embedded knowledge will need attention. For this reason, the latter part of the Summer Term focusses on units of work that have not yet been addressed from the Scheme of Learning due to school closures. To facilitate smooth transition and continuity and to provide an opportunity for consolidation, the first elements of this Autumn Term plan address the end of year objectives from the previous year. As the term progresses, the plan seeks to integrate expected prior learning, previously assumed and now no longer can be, into the standard units from the original scheme. In this way, the aim is to build on what is known and recalled in a moderately accelerated way to help learners get back on track for the end of the 20/21 academic year.

Teachers will need to adapt this schedule to the needs of their learners and to the number of hours study allocated in the timetable to mathematics.

The Hampshire Mathematics team full scheme of learning for KS1, 2 and 3 (Y1-Y9) offers long and medium-term maps plus linked units of work with key tasks and teaching points. This is available to schools subscribing to the Moodle Plus

https://maths.hias.hants.gov.uk/

The Year 7 units referred to for the Summer term are adapted from the Y7 Scheme of Learning for this transition document. They are for reference only and do not match the original units exactly.

Week commencing	Unit	Area of study	Objectives	Key teaching points/ facts focus/ 'Big Ideas'
Mon 25-05-2020			HALF TERM	
Mon 01-06-2020	7.6	Four Operations: Integers Fractions and decimals	Use the four operations, including formal written methods, applied to integers, decimals, proper and improper fractions, and mixed numbers Solve contextual problems involving all four operations	Ensure that formal and informal methods for calculation are modelled for students, using visuals as appropriate (Bar model, number line and array) Encourage students to construct diagrams when problem solving so that they can see the structure of a problem as well as choose a calculation.
Mon 08-06-2020	7.15	Indices	Use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiple Use integer powers and associated real roots (square, cube and higher), recognise powers of 2,3,4,5	Revise and revise the laws of indices Ensure students are secure with prime, factor and multiple Explore higher powers of numbers and associate roots of square and cube numbers.
Mon 15-06-2020	7.10	Coordinates (four quadrants)	Work with coordinates in all four quadrants	Plot coordinates in all four quadrants. Use this opportunity to recall properties of 2-D shape by reasoning about missing vertices, half way points and diagonals in shapes on a coordinate grid

Mon 22-06-2020	7.10	Coordinates (linear functions	Recognise, sketch and produce graphs of linear functions of one variable, using equations in x and y and the Cartesian plane	Practise substituting into a formula and then constructing tables of values for linear functions. Plot lines Predict what the line will look like / where it will be and then sketch linear functions Link tables of values to sequences (and nth term as appropriate). Encourage students to look for patterns.
Mon 29-06-2020	7.12	Statistics: Averages, tables and charts	Describe, interpret and compare observed distribution of a single variable through data sets from univariate empirical distributions through appropriate measures of central tendency (mean, median, mode) and spread (range) Construct and interpret appropriate tables, charts and diagrams, including frequency tables, bar charts, pictograms and pie charts for categorical data	Ensure students are secure with finding the mean, median, mode and range of a set of data Compare several data sets and encourage students to reason and identify similarities and differences so that they can begin to infer and interpret trends within populations. Plot data on different graphs and charts and agree which is the most effective representation and why. For pie charts, ensure students can sue a protractor accurately.
			Construct and interpret vertical line or bar charts for ungrouped numerical data.	

Mon 06-07-2020	7.13	Geometry	Derive and apply formulae to calculate	Review and derive the formulae for the area and
		Angles	and solve problems involving perimeter	volume for 2-D and 3-D shapes as appropriate
		Area	and area of triangles, parallelograms,	
		Volume	trapezia, volume of cuboids (including	Explore how all 2-D shapes are constructed from
			cubes) and other prisms (including	triangles and use this to reason about angles in
			cylinders)	shapes
			Calculate and solve problems involving	Solve contextual problems that involve finding and
			perimeters of 2-D shapes (including	reasoning about the perimeter, area and volume of a
			circles), areas of circles and composite	range of shapes.
			shape	
Mon 13-07-2020	7.14	Algebra	Substitute numerical values into	Review key algebraic manipulation skills to ensure
		Substituting and	formulae and expressions, including	that students are secure with the basics.
		solving linear	scientific formulae	
		equations		Solve problems in context as well as exercise-based
			Simplify and manipulate algebraic expressions to maintain equivalence by	practice.
			collecting like terms and multiplying a	Use perimeter of shapes formulae to apply algebraic
			single term over a bracket	skills
			Use algebraic methods to solve linear	Use bar models to solve linear equations to support
			equations in one variable	visual learners.
Mon 20-07-2020			SUMMER HOLIDAY COMMENCES TH	HURS 23-07-2020

Week commencing	Unit	Area of study	Objectives	Key teaching points/ facts focus/ 'Big Ideas'
Thurs 03-09-2020			START OF NEW ACADEMIC	YEAR
Mon 07-09-2020	7.10	Coordinates: Four quadrants Linear functions	Work with coordinates in all four quadrants	Number lines extend indefinitely from zero in the positive and negative directions
			Recognise, sketch and produce graphs of linear functions in one variable using equations in x and y in the Cartesian	The number line can be represented horizontally (x-axis) or vertically (y-axis)
			plane	When two number lines intersect at right angles at zero, we create a four quadrant coordinate system that enables us to describe the position of an individual point using the (x,y) notation.
				The general equation for a straight line is y=mx+c. m describes the gradient, or slop, of the line and c describes the point at which the line intercepts the y-axis (x=0)
				Parallel lines have the same gradient
				When generating pairs of coordinates, the y-coordinate is a function of (is dependent on) the x-coordinate according to the equation of the line.
Mon 14-09-2020	7.12	Statistics: Frequency tables	Describe, interpret and compare observed distribution of a single variable	For univariate (one variable) empirical (based on real life scenarios) distributions:
		Pie Charts	through data sets from univariate	ine scenarios) distributions.
		Line graphs	empirical distributions through appropriate measures of central tendency (mean, median, mode) and	To find the mean of a data set, sum al the elements and divide by the number in the set.
			spread (range)	To find the median of a data set, locate the middle value when the data is ordered. For an odd number of elements, the median will appear as a value. For an

Construct and interpret appropriate tables, charts and diagrams, including	even number of elements, the median will be half- way between the two middle values.
frequency tables, bar charts, pictograms and pie charts for categorical data	The mode is the most common value. A data set can be bi-modal (with two modes) or multi-model (with multiple modes)
Construct and interpret vertical line or	
bar charts for ungrouped numerical	The range is the difference between the largest and
data.	the smallest numerical value in the set.
	Categorical data can be displayed using pictograms and bar charts. The scale or key can be helpful or misleading.
	Categorical data can be collected using a tally chart and then ordered and recorded in a frequency table. This allows the measures of spread and central tendency to be calculated.
	For pie charts: 360° = 100% = 1 whole circle
	To calculate the percentage required to represent the data, x, from a set of number, n: $\frac{x}{n} \times 100\%$
	To calculate the fraction of the circle for each sector, show the number of degrees as the numerator and 360 as the denominator. Simplify as appropriate
	Pie charts can show the mode clearly

				Ungrouped numerical data can be displayed and interpreted using a vertical line graph (or bar chart). It can show measures of central tendency and spread.
Mon 21-09-2020	7.13	Geometry: Perimeter, area and Volume	Derive and apply formulae to calculate and solve problems involving perimeter and area of triangles, parallelograms, trapezia, volume of cuboids (including cubes) and other prisms (including cylinders)	The perimeter of any closed 2-D shape is the total distance around the outside edges. The area of a rectangle is length x width The area of a triangle is ½ (base x height). It is also half of the surrounding rectangle. The area of a parallelogram is base x perpendicular
				height The area of a trapezium is the mean average length of the two parallel sides x the perpendicular height (or half the sum of the parallel sides x the distance between them) The volume of a cuboid is length x width x height
				The volume of any prism is the area of the cross-section x length.
Mon 28-09-2020	7.13	Geometry: Perimeter, area and Volume	Calculate and solve problems involving perimeters of 2-D shapes (including circles), areas of circles and composite	The circumference of a circle is calculated as $\boldsymbol{\pi} \ \boldsymbol{x}$ diameter
			shapes	The area of a circle is calculated as π x radius ² π is defined as the number of diameters (3.142). It is the ratio of a diameter to its circumference

Mon 05-10-2020	7.15	Y7 Place value and	Understand and use place value for	Laws of arithmetic and how they apply to integers
	8.1	Number:	decimals.	and decimal numbers
		Fractions, decimals		
		and percentages	Order positive and negative decimals	Commutative, distributive and associative laws linked
		Y8:	and fractions	to BIDMAS
		Four operations		
		with fractions	Use the number line as a model for	Use of informal and formal written methods when
			ordering real numbers	calculating with integers and decimals
			Use the symbols =, ≠ , < , > , ≤ and ≥	Know and use a range of symbols that denote
			Work interchangeably with terminating decimals and their corresponding	equality and inequality.
			fractions (such as 3.5 and 7/2)	Find the lowest common denominator when adding
			mathematical (such as one and 1/2)	and subtracting fractions
			Use the four operations applied to all	
			real numbers (including proper and	Use bar modelling to find fractions and percentage
			improper fractions, and mixed numbers)	quantities
			Interpret fractions and percentages as operators	
Mon 12-10-2020	8.1	Place value and	Understand and use place value for	Number lines extend indefinitely from zero in the
		number: Four operations	decimals, measures and integers of any size	positive and negative directions
		with measure		Explore the effect of adding/subtracting/multiplying
		Directed number Primes	Use four operations applied to decimals in the context of measure	and dividing by a negative number.
		Fillies	in the context of measure	Know or be able to identify primes to 100
			Use four operations applied to positive	Know or be able to identify primes to 100
			and negative numbers	Ensure students are secure with x / ÷ of powers of ten

			Use prime factorisation including using product notation and the unique factorisation property (every number greater than 1 is either a prime number itself or can be represented as the product of primes. This representation is unique (except for the order of factors) Express numbers as products of primes	Multiply by using factors rather than by partitioning $27 \times 3 = (9x3) \times 3 = 9 \times (3 \times 3) = 9 \times 9 = 81$ Develop multiplying by factors into prime factorisation $(27 \times 3 = 9 \times 3 \times 3 = 3 \times 3 \times 3 \times 3 = 3^4 = 81)$
Mon 19-10-2020	7.11 8.2	Geometry: Angles and lines	Apply the properties of angles at a point, on a straight line and vertically opposite angles.	Secure number bonds within 360 (90, 180, 270) Secure parallel, perpendicular and labelling conventions
			Derive and use the sum of the angles in a triangle Use the sum of the angles in a triangle to deduce the angle sum of any polygon Understand and use the relationship between parallel lines and alternate and corresponding angles.	Know the sum of the angles: round a point is 360° on a straight line is 180° in a right angle is 90° in any triangle is 180° in any quadrilateral is 360° Derive interior angle size and sum for regular polygons such as pentagon, hexagon and octagon Ensure written and oral reasoning when identifying missing angles Know that vertically opposite angles are equal Know that alternate angles are equal Know that corresponding angles sum to 180°

Mon 26-10-2020			HALF TERM	
Mon 02-11-2020	7.11 8.2	Geometry: Property of shape Transformations	Identify properties of, and describe results of, translations, rotations and reflections applied to given figures Derive and illustrate properties of triangles, quadrilaterals, circles and other plane figures (for example, equal lengths and angles) using appropriate language and technology	Know that a square is a special case of all other named quadrilaterals and why. Annotation of diagrams with correct notation and conventions used Know the sum of the angles: • round a point is 360° • on a straight line is 180° • in a right angle is 90° • in any triangle is 180° • in any quadrilateral is 360° Reason orally, pictorially and in writing about derived knowledge of shapes.
Mon 09-11-2020	8.3	Probability: Mutually exclusive outcomes	Use the 0-1 probability scale Understand that the probabilities of all possible outcomes sum to 1 Explore what can and cannot be inferred in probabilistic settings and express argument formally Introduce sample space diagrams	Secure equivalence of fractions, decimals and percentages Secure addition and multiplication of fractions in the context probability (i.e. multiply = and / addition = or) Know the contents of a pack of playing cards Ensure that students are secure with the 0-1 number line (link it to 0-10 number bonds and 0-100 bonds for percentage probabilities) Carry out probability experiments with two mutually exclusive outcomes to introduce sample spaces (coin toss)

Mon 16-11-2020	8.4	Ratio and	Understand that a multiplicative	Use bar models to support an understanding pf
-		proportion:	relationship between two quantities can	percentage change. Identify what is the whole and
		Percentage change	be expressed as a fraction or a ratio	what are the parts?
		i crecitage change	be expressed as a fraction of a ratio	what are the parts:
			Divide a given quantity into a ratio with	Use 'four corners' or the 'box method' as a model to
			more than two parts	support conversions
			Express the division of a quantity into	Encourage students to consider the statement 'for
			two or more parts as a ratio using	every' when thinking about change and ratio. For
				,
			appropriate notation (:)	example, 'For every £3 I have, you have £8' can be expressed as 3:8 in ratio notation.
			Solve problems involving percentage	
			change including percentage increase,	Use bar models to show % greater than 100%
			decrease and original value problems	
			and simple interest in financial	
			mathematics.	
			mathematics.	
			Work with percentages greater than	
			100%	
14	744	Al. d.		Billionicalling
Mon 23-11-2020	7.14	Algebra:	Generate terms of a sequence either	Pattern spotting
	8.5	Y7: Sequences	from a term-to-term rule or a position-	
		Y8: Arithmetic	to-term rule	Identify multiples and factors
		sequences		
			Recognise arithmetic sequences and find	Be able to step count from any number in different
			the nth term	sized steps (forward and back)
			Recognise geometric sequences and	Recognise an arithmetic sequence is a linear
			appreciate other sequences that arise	progression and identify the constant difference as
			app. sease street sequences trial arise	the coefficient of 'n', the position of the term
				the coefficient of 11, the position of the term
				Sequences can be generated by additive or
				,
				multiplicative increases or decreases

				Explore other sequences such as Fibonacci and triangular numbers.
Mon 30-11-2020	8.5	Algebra: Linear equations Equation of a straight line	Simplify and manipulate algebraic expression by taking out common factors Solve linear equations, including factorising and rearranging Reduce a given linear equation in two variables to the standard form y=mx+c Calculate and interpret gradients and intercepts of graphs such as linear equations numerically, graphically and algebraically	Find factor pairs of numbers up to 50 Use bar models to show solving using a balance method and an elimination method Know that m represents the gradient and c represents the y-intercept Know that as m increases the line gets steeper Know that as c changes , the line slides up and down the y-axis/grid
Mon 07-12-2020	7.14 8.5	Algebra: Laws of indices	Use conventional notation for the priority of operations, including brackets, powers, roots and reciprocals Use integer powers and associated real roots Recognise powers of 2,3,4 and 5	Squaring and cubing numbers and then variables Commutative, distributive and associative laws linked to BIDMAS Laws of indices

Mon 14-12-2020	7.14	Algebra:	Substitute numerical values into	Laws or arithmetic and how they apply to algebraic
	8.5	Y7: Formulae	formulae and expressions, including	conventions
		Y8: Formulae and	scientific formulae.	
		rearranging		Commutative, distributive and associative laws linked
			Simplify and manipulate algebraic	to BIDMAS
			expressions to maintain equivalence by	
			collecting like terms and multiplying	Use bar models to show rearranging and solving
			over a bracket	equations
			Use algebraic methods to solve linear equations in one variable, including rearranging	
Mon 21-12-2020		CHRISTMAS		