HIAS SCHOOL IMPROVEMENT

This learning schedule is based on the Hampshire Mathematics Scheme of Learning and is designed to take account of the national school closures between March 2020 and June 2020. Learners will complete one academic year and begin the next in need of catch-up and consolidation, together with some new learning from the previous months that has been missed. This document focusses on the core skills, knowledge and understanding that an 'on-track' learner would be expected to bring to the next stage of their learning and acknowledges that, for many, the habits of learning and the facility to recall previously embedded knowledge will need attention. For this reason, the latter part of the Summer Term focusses on units of work that have not yet been addressed from the Scheme of Learning due to school closures. To facilitate smooth transition and continuity and to provide an opportunity for consolidation, the first elements of this Autumn Term plan address the end of year objectives from the previous year. As the term progresses, the plan seeks to integrate expected prior learning, previously assumed and now no longer can be, into the standard units from the original scheme. In this way, the aim is to build on what is known and recalled in a moderately accelerated way to help learners get back on track for the end of the 20/21 academic year.

Teachers will need to adapt this schedule to the needs of their learners and to the number of hours study allocated in the timetable to mathematics.
The Hampshire Mathematics team full scheme of learning for KS1, 2 and 3 (Y1-Y9) offers long and medium-term maps plus linked units of work with key tasks and teaching points. This is available to schools subscribing to the Moodle Plus
https://maths.hias.hants.gov.uk/

The Year 6 units referred to for the Summer term are adapted from the Y6 Scheme of Learning for this transition document. They are for reference only and do not match the original units exactly.

HIAS SCHOOL IMPROVEMENT

Week commencing	Unit	Area of study	Objectives	Key teaching points/ facts focus/ 'Big Ideas'
Mon 25-05-2020	HALF TERM			
Mon 01-06-2020	6.10	All four operations (secure the formal and informal methods)	Solve problems involving addition, subtraction, multiplication and division, deciding which operations and methods to use and why Use knowledge of the order of operations to carry out calculations involving the four operations Identify common factors, common multiples and prime numbers.	Revisit and embed informal strategies for addition and subtraction using complements to $10,100,1000$. Use number-lines as a visual consolidation Revisit multiplication tables and associated facts Use arrays and bar models as visual consolidation to support transition from Y6 to Y7 Model formal methods with models and images to remind learners of how and why a method works.
Mon 08-06-2020	6.10	Statistics	Calculate the mean as an average and the range as a measure of spread Solve comparison, sum and difference problems using information presented in a line graph or pie chart Complete, read and interpret information in tables.	Review a range of known graphs and charts, including line graphs, bar charts, pie charts and pictograms. Plot information onto graphs and charts from given data Support pupils to construct and compare pie charts as appropriate Calculate and compare mean averages and ranges from different data sets to encourage pupils to reason about averages and their meaning.

HIAS SCHOOL IMPROVEMENT

Mon 15-06-2020	6.11	Geometry (position and direction)	Compare and classify geometric shapes based on their properties and sizes and find unknown angles. Describe positions on the full coordinate grid (all four quadrants) Draw and translate simple shapes on a coordinate plane and reflect them in the axes.	Use simple Venn diagrams and Carroll diagrams to support pupils' reasoning about what is the same and what is different about 2-D and 3-D shapes Practise using a protractor and reason about angles in shapes ~ link to other known properties Plot 2-D shapes on coordinate grids. Reason about 2-D shapes by solving missing coordinate problems Translate and reflect shapes \sim encourage pupils to reason about where the shape image will end up before carrying out the transformation.
Mon 22-06-2020	6.16	Fractions (addition and subtraction)	Use common factors to simplify fractions; use common multiples to express fractions in the same denomination. Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions Compare and order fractions, including fractions larger than one.	Ensure that pupils have a good understanding of equivalence in fractions using their knowledge of factors and multiples Use knowledge of prime numbers, division and multiplying to simplify fractions. Use bar models to support addition and subtraction of fractions Skip counting on number-lines in fractional steps supports addition and subtraction of fractions and also equivalence and mixed number conversion (for example, skip counting in thirds from zero leads to $3 / 3=1$ whole and $4 / 3=11 / 3$)

HIAS SCHOOL IMPROVEMENT

Mon 29-06-2020	6.11	Fractions (multiplication and division)	Multiply simple pairs of proper fractions (show on an array), writing the answer in its simplest form e.g. $1 / 4 \times 1 / 2=1 / 8$ Divide proper fractions by whole numbers e.g. $1 / 3 \div 2=1 / 6$	Ensure that pupils have a good understanding of equivalence in fractions using their knowledge of factors and multiples Use knowledge of prime numbers, division and multiplying to simplify fractions. Use arrays, bar models and number-lines to support the concepts of multiplication by a fractions and division of a fraction
Mon 06-07-2020	6.18	Measure Perimeter, area and volume	Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate Use, read, write and convert between all standard metric units. Recognise that shapes with the same areas can have different perimeters and vice versa Recognise when it is possible to use formulae for the area and volume of shapes. Calculate the area of parallelograms and triangles Calculate, estimate and compare volume of cubes and cuboids using standard metric units ($\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3} \mathrm{~km}^{3}$).	Problem solving in context and, where possible, in practical situations that involve perimeter, area and volume. Ensure pupils can work with a range of 2-D and 3-D shapes and calculate perimeters, areas and volumes using reasoning, composite shapes and formulae

Mon 13-07-2020	6.16 $\mathbf{(6 . 4)}$ $\mathbf{(6 . 6)}$	Fractions, decimals and percentages	Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts	Ensure that pupils have a good understanding of equivalence in fractions using their knowledge of factors and multiples		
Solve problems using all four rules of						
arithmetic with numbers up to 3						
decimals places					\quad	Use knowledge of prime numbers, division and
:---						
multiplying to simplify fractions.						
Find fractions and percentages of						
quantities and shapes.						

Week commencing	Unit	Area of study	Objectives	Key teaching points/ facts focus/ 'Big Ideas'

HIAS SCHOOL IMPROVEMENT

Thurs 03-09-2020	START OF NEW ACADEMIC YEAR			
Mon 07-09-2020	$\begin{aligned} & 6.10 \\ & 6.14 \\ & 6.15 \end{aligned}$	Arithmetic (four rules): whole numbers -secure and revisit formal and informal methods	Solve problems involving addition, subtraction, multiplication and division, deciding which operations and methods to use and why Use knowledge of the order of operations to carry out calculations involving the four operations Identify common factors, common multiples and prime numbers.	Revisit and embed informal strategies for addition and subtraction using complements to $\mathbf{1 0 , 1 0 0 , 1 0 0 0}$. Use number-lines as a visual consolidation Revisit multiplication tables and associated facts Use arrays and bar models as visual consolidation to support transition from Y6 to Y7 Model formal methods with models and images to remind learners of how and why a method works.
Mon 14-09-2020	$\begin{aligned} & \hline 6.15 \\ & 6.17 \\ & 6.18 \end{aligned}$	Negative numbers Arithmetic (four rules): Decimals secure and revisit formal and informal methods in context (measure)	Use negative numbers in context and calculate intervals across zero Solve problems involving the calculation and conversion units of measure $(\mathrm{g} / \mathrm{kg}$; ml / I) using decimal notation up to three decimal places	Number-line work bridging zero Problem solving in context (e.g. Temperature graphs) Review informal methods for working with decimals in context e.g. use of complements to 1 and numberlines as a visual Model formal methods with decimals with models and images to remind learners of how and why a method works Revisit and embed key conversion facts for measure and link to powers of 10 in context.
Mon 21-09-2020	$\begin{aligned} & \hline 6.16 \\ & 6.19 \end{aligned}$	Fractions: equivalence and arithmetic Percentages: equivalence and calculation	Add and subtract fractions with different denominators and mixed numbers using the concept of equivalent fractions	Ensure times tables and division facts are secure. Ensure multiples and factors are understood and can be independently generated Use arrays and bar models to support learners who are not yet secure

HIAS SCHOOL IMPROVEMENT

			Multiply simple pairs of proper fractions (show on an array), writing the answer in its simplest form e.g. $1 / 4 \times 1 / 2=1 / 8$ Divide proper fractions by whole numbers e.g. $1 / 3 \div 2=1 / 6$ Solve problems involving the calculation of percentages, e.g. 15\% of 360	Generate equivalent fractions and explore the multiplicative connection between the denominator and the numerator (for all halves, the numerator is half the denominator) so that learners do not need to rely on patterning to generate equivalences. Solve problems in context and model how and why a procedure works. (e.g. one third divided by two is the same as half of one third ~ use a bar model to see that this is one sixth rather than relying on a procedure). Link percentages to fractions with a denominator of 100 as well as division by 10 and 100 (15 hundredths of three hundred and sixty) Use visual models and images such as number-lines
Mon 28-09-2020	6.11	Geometry: position and direction	Compare and classify geometric shapes based on their properties and sizes and find unknown angles. Describe positions on the full coordinate grid (all four quadrants) Draw and translate simple shapes on a coordinate plane and reflect them in the axes.	Use all four quadrants on the coordinate plane to explore properties of 2-D shape and simple transformations (translations and reflections only) Use Venn diagrams and Carroll diagrams to classify shapes (2-D and 3-D) Revise missing angle problems around a point, on a straight line, in a triangle and in a quadrilateral. Ensure that 'parallel' and 'perpendicular' are secure

HIAS SCHOOL IMPROVEMENT

Mon 05-10-2020	7.1	Algebra: notation and simplifying	Use and interpret algebraic notation including: $a b$ in place of $a x b, 3 y$ in place of $y+y+y$ and $3 x y, a 2$ in place of $a x a$, $a 3$ in place of $a x a x a, a 2 b$ in place of a $x a x b, a / b$ in place of $a \div b$ and the correct use of brackets. Understand and use the concepts and vocabulary of expressions, equations, inequalities, terms and factors. Simplify and manipulate algebraic expressions to maintain equivalence by collecting like terms and multiplying a single term over a bracket.	Y6: Express missing number problems algebraically Y7: Revise and link to the laws of arithmetic and how they apply to algebraic conventions: Commutative, distributive and associative laws linked to 'BIDMAS'.
Mon 12-10-2020	7.1	Algebra: Sequences	Y6: Generate and describe linear sequences Y7: Recognise arithmetic sequences Generate terms of a sequence from a term-to-term rule Introduce position-to-term rules for simple arithmetic sequences, linked to multiplication tables	Identify multiples and factors Be able to step count from any number. Recognise an arithmetic sequence is a linear progression. Develop the idea of the nth term

HIAS SCHOOL IMPROVEMENT

Mon 19-10-2020	7.2	Number and PV, including rounding and approximation	Y6: Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Round any whole number to a required degree of accuracy Identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places. Y7: Identify digits by their place value and develop a sense of number, particularly the 'size', or magnitude of number when calculating. Understand the significance of digits in a number when considering place value and use this to round and estimate the outcome of calculations.	Work with basic and more complex calculations that require an estimate before calculating. Develop a sense of magnitude. (About how much are we expecting? What would be a reasonable estimate and why?) Contextual problems that require rounding in different ways to make sense of an answer. Powers of ten and how they link to rounding Powers of ten and how the magnitude of the largest digit is the most significant, followed by the others in descending order of powers of 10.
Mon 26-10-2020			HALF TERM	

Mon 02-11-2020	7.2	All four rules of arithmetic with integers and fractions	Use the four operations, including formal written methods, applied to integers and decimals Associate a fraction with division and calculate decimal fraction equivalents (e.g. $0.375=3 / 8$) Recognise and use relationships between operations, including inverse operations Use the symbols $=, \neq,>,<, \leq, \geq, \approx$	Laws of arithmetic and how they apply to integers and decimal numbers. Commutative, distributive and associative laws linked to 'BIDMAS'. Use of informal and formal written methods when calculating with integers and decimals. Know and use a range of symbols that denote equality and inequality.
Mon 09-11-2020	7.3	Geometry: Perimeters	Calculate and solve problems involving the perimeters of 2-D shapes	Ensure that learners know that the perimeter is the distance around the edge of a closed 2-D shape (Y6). This can be measured and described using standard and non-standard units of length. Examples of standard units include cm, m, miles and examples of non-standard units include 'number of matchsticks or rods required to surround the shape'.
Mon 16-11-2020	7.3	Geometry: Perimeters and formulae	Y6: Use simple formulae Recognise when it is possible to use formulae for area and volume of shapes Y7: Derive and apply formulae to calculate and solve problems involving perimeter and area of triangles, parallelograms and trapezia	Ensure that learners know that the area is the amount of space inside a closed 2-D shape (Y6). This can be measured and described using standard and non-standard units of length. Examples of standard units include $\mathbf{m m}^{2}, \mathrm{~cm}^{\mathbf{2}}, \mathrm{m}^{\mathbf{2}}, \mathrm{km}^{\mathbf{2}}$ and examples of non-standard units are 'counting squares' or other congruent shapes within the outer perimeter. The relationship between side lengths that defines the area of the shape can be described in a formula. This formula is an efficient and generalised way to calculate different areas.

HIAS SCHOOL IMPROVEMENT

Mon 23-11-2020	7.4	Ratio and Proportion: Fractional quantities	Express one quantity as a fraction of another, where the fraction is less than 1 and greater than 1 Develop and formalise knowledge of ratio and proportion	Proportional relationships can be shown in a variety of ways such as bar model, on a number-line, by division, as a proper or improper fraction, as a proportion of an amount
Mon 30-11-2020	7.4		Calculation: Calculators, ordering and the order of operations	Use conventional notation for the priority of operations, including brackets the units must be the same. If they are different, you must convert units so that they are the same

HIAS SCHOOL IMPROVEMENT

HIAS SCHOOL IMPROVEMENT

				same, we can write the product as an actual number or in terms of the factor in its index form e.g. $3 \times 3 \times$ $3 \times 3=34$ or 81 . Roots are the inverse of squaring, cubing etc a number. For $\mathbf{7}^{\mathbf{2}}=\mathbf{7 \times 7 = 4 9}$; the index is $\mathbf{2}$ and the root is $\mathbf{7}$. So the square root of 49 is 7 . This can be written as V49 $=7$ (because $\sqrt{ } 49=\mathrm{V}(7 \times 7)=\mathrm{V} 7 \times \mathrm{V} 7=7$) For $7^{3}=7 \times 7 \times 7=343$; the index is 3 and the root is 7. So the cubed root of 343 is 7 . This can be written as ${ }^{3} \sqrt{ } 49=343$ LCM: The least number which is exactly divisible by each of the given numbers is called the least common multiple of those numbers. E.g. The LCM of 3,31 and $62=186(2 \times 3 \times 31)$ HCF: The largest number that divides two or more numbers is the highest common factor (HCF) for those numbers. E.g. The HCF of $30,36,42$ and 45 is 3.
Mon 21-12-2020			Christivas	

