## Problem of the Week: Week 5 (Sum2): Year 10: Algebra: Functions

- where appropriate, interpret simple expressions as functions with inputs and outputs; \{interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function'\}
- simplify and manipulate algebraic expressions (including those involving surds \{and algebraic fractions\}) by:
$>$ factorising quadratic expressions of the form $x^{2}+b x+c$, including the difference of two squares; \{factorising quadratic expressions of the form $\left.\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c}\right\}$
> simplifying expressions involving sums, products and powers, including the laws of indices


## Warm up

## Functions

$$
f(x)=2 x^{2}+7
$$

What is the value of:
a) $f(3)$
b) $f(-10)$
c) $f(1 / 2)$
d) $f(\sqrt{ } 3)$

## Solutions

a) $f(3)=2 \times 3 \times 3+7=\underline{\mathbf{2 5}}$
b) $\mathrm{f}(-10)=2 \times-10 \times-10+7=\underline{207}$
c) $f(1 / 2)=2 \times 1 / 2 \times 1 / 2+7=\underline{71 / 2}$
d) $f(\sqrt{ } 3)=2 \times \sqrt{ } 3 \times \sqrt{ } 3+7=2 \times 3+7=\underline{\mathbf{1 3}}$

## Challenge

## Composite functions

$f(x)=2 x+c$
$g(x)=c x+5$
$f g(x)=6 x+d$
$c$ and $d$ are constants.

Work out the value of $d$.

## Solution

```
\(\mathrm{fg}(\mathrm{x})=\mathrm{f}(\mathrm{cx}+5)\)
\(\mathrm{fg}(\mathrm{x})=2(\mathrm{cx}+5)+\mathrm{c}\)
Also \(\mathrm{fg}(\mathrm{x})=6 \mathrm{x}+\mathrm{d}\)
So \(6 x+d=2(c x+5)+c \quad\) (expand the brackets)
\(6 x+d=2 c x+10+c\)
(compare coefficients)
\(6 x=2 c x\) and \(d=10+c\)
\(6=2 c\)
\(3=\mathrm{c} \quad\) (substitute \(\mathrm{c}=3\) into \(\mathrm{d}=10+\mathrm{c}\) )
\(\mathrm{d}=13\)
```


## Warm up

## Difference of two squares

The area of a rectangle is given as $x^{2}-169$
(a) Find the side lengths of the rectangle in terms of $x$
(b) If $x$ is given as 25 , find the numerical value of the area of the rectangle
(c) If the area is given as 120 square units, find $x$

## Solution

(a) Using the 'difference of two squares', $x^{2}-169=(x+13)(x-13)$

The two side lengths are $\underline{x+13}$ and $x-13$
(b) If $x=25$, then the numerical area $=(25+13)(25-13)=38 \times 12=\underline{456}$

Or $625-169=\underline{456}$
(c) $x^{2}-169=120 \quad$ (rearrange)
$x^{2}=169+120$
$x^{2}=289 \quad$ (square root)
$x=17$

## Challenges

## Factors and Primes

a) Factorise the expression $9 x^{2}-1$
b) Use your answer the find the prime factors of 899
c) Factorise the expression $4 x^{2}-49$
d) Use your answer to find the three unique prime factors of 39951

## Solutions

a) $(3 x-1)(3 x+1)$
b) Let $x=10$

$$
9 x^{2}-1=9 \times 10 \times 10-1=900-1=899
$$

$$
9 x^{2}-1=(3 x-1)(3 x+1)=(30-1)(30+1)=\underline{29 \times 31}
$$

c) $(2 x-7)(2 x+7)$
d) Let $x=100$
$4 x^{2}-49=4 \times 100 \times 100-49=40000-49=39951$
e) $4 x^{2}-49=(2 x-7)(2 x+7)=(2 \times 100-7)(2 \times 100+7)=(200-7)(200+7)=193 \times 207$

193 is prime
$207=23 \times 3 \times 3$
$\underline{39} 951=193 \times 23 \times \mathbf{3}^{2}$

