Problem of the Week: Week 4 (Sum1): Year 10: Algebra: Linear and quadratic graphs

- use the form y=mx + x c to identify parallel **{and perpendicular}** lines; find the equation of the line through two given points, or through one point with a given gradient
- recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions, the reciprocal function $y = \frac{1}{x}$ with $x \neq 0, +$

{the exponential function $y = k^x$ for positive values of k, and the trigonometric functions (with arguments in degrees), $y = \sin x$, $y = \cos x$ and $y = \tan x$ for angles of any size}

{sketch translations and reflections of the graph of a given function}

Perpendicular Lines

The gradient of line OR is $\frac{7}{4}$

PQ is perpendicular to OR. P is the point (14, 0).

Not drawn accurately

Work out the equation of line *P*Q. Give your answer in the form ax + by = c, where *a*, *b* and *c* are integers.

Parallel Lines

Complete the table of values for 2x + y = 10

x	0	1	2	3	4	5
У	10		6		2	

On the grid draw the graph of 2x + y = 10 for values of x from 0 to 5.

Draw three other lines that are parallel to 2x + y = 10 and state their equations.

Challenge: The exponential function

Draw the graph of $y = 0.8^{x}$ for values of x from 0 to 6

x	0	1	2	3	4	5	6
у							

Exponential function (2)

The point $\begin{pmatrix} 3, \frac{1}{64} \end{pmatrix}$ lies on the curve $y = k^x$ where k is a constant. Show that the point $\begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix}$ lies on the curve.

HIAS HOME LEARNING

