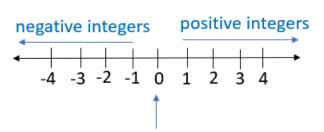
integer

-15, 7, 43 are all integers



Picture, model, or diagram

Improvement and Advisory Service

Non-Example

Integer Number Line

Zero is neither positive not negative

0.5, -6.2, 81.9 are not integers

divisor

 $18 \div 3 = 6$ 3 is the divisor

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

Example

18		
6	6	6

18 divided between three The number of groups is the divisor

$$18 \div 3 = 6$$
18 is the dividend

dividend

 $18 \div 3 = 6$ 18 is the dividend

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

18 divided between three

The original amount to be divided is the dividend

$$18 \div 3 = 6$$
3 is the divisor

$$18 \div 3 = 6$$

6 is the quotient

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

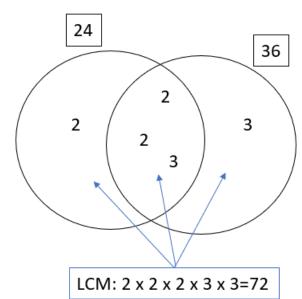
Example

18		
6	6	6

18 divided between three gives six in each group The size of the group is the quotient

(The 'answer' to a division calculation)

 $18 \div 3 = 6$ 18 is the dividend


lowest common multiple (LCM)

The **LCM** of 24 and 36 is 72

Picture, model, or diagram

Prime Factor Form 24 = 2 x 2 x 2 x 3 36 = 2 x 2 x 3 x 3

Improvement and Advisory Service

Non-Example

The HCF of 24 and 36 is 12 (highest common factor)


highest common factor (HCF)

The HCF of 24 and 36 is 12

Picture, model, or diagram

Prime Factor Form 24 = 2 x 2 x 2 x 3 36 = 2 x 2 x 3 x 3

Improvement and Advisory Service

The LCM of 24 and 36 is 72 (lowest common multiple)

square root

$$\sqrt{9} = + / - 3$$

$$\begin{cases} 3 \times 3 = 9 \\ -3 \times -3 = 9 \end{cases}$$

Picture, model, or diagram

Improvement and Advisory Service

$$3 \times 3 = 3^{2}$$

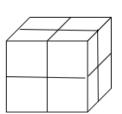
 $3 \times 3 = 9$
 $\sqrt{3^{2}} = 3$

$$3\sqrt{8} = 2$$

 $\{2 \times 2 \times 2 = 8\}$

$${2 \times 2 \times 2 = 8}$$

cube root


$$3\sqrt{8} = 2$$

$$\left\{ 2 \times 2 \times 2 = 8 \right\}$$

Picture, model, or diagram

Improvement and Advisory Service

$$2 \times 2 \times 2 = 2^{3}$$

 $2 \times 2 \times 2 = 8$
 $3\sqrt{8} = 2$

$$\sqrt{9} = + / - 3$$

$$\begin{cases} 3 \times 3 = 9 \\ -3 \times -3 = 9 \end{cases}$$

product rule (for counting)

The number of different ways 3 hats can be distributed amongst 3 people is $3 \times 2 \times 1 = 6$

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

Person 1 has three choices (YGB) Person 2 then has two choices (GB) Person 2 than has one choice (B)

The probability of selecting yellow, then green, then blue is

index (indices)

$$14^3 = 14 \times 14 \times 14 = 2744$$

14 is the base

3 is the index (or power)

Picture, model, or diagram

Improvement and Advisory Service

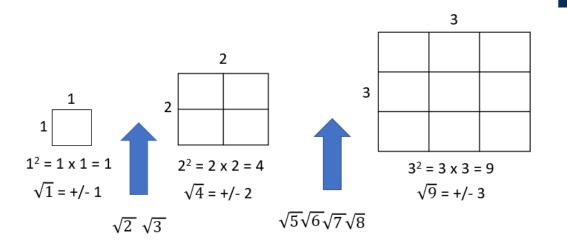
х	1	=	1	4
х		=	Т	4

x4	<i>x</i> ³	x^2	x ¹	x ⁰
38416	2744	196	14	1

$$14 \times 3 = 42$$

V

{3 is an 'imperfect square'}


A surd is not a whole number. It's decimal equivalent is a non-repeating, non-terminating decimal. You cannot place it accurately on a number-line.

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

surd

 $\sqrt{4}$

{4 is a 'perfect square' and can be evaluated as +/- 2}

rationalise (denominator)

$$\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

3 is a rational number ~ you can place it on a number-line

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

$$\frac{a}{\sqrt{b}} = \frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

$$\frac{\sqrt{b}}{\sqrt{b}} = 1$$

$$\frac{2}{\sqrt{3}}$$

This fraction has an irrational (surd) denominator A surd is not a whole number. It's decimal equivalent is a non-repeating, non-terminating decimal. You cannot place it accurately on a number-line

standard (index) form

 3.754×10^{5}

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

Example

Numbers in standard form have two parts

A number from 1 to 10, not including 10

A power of

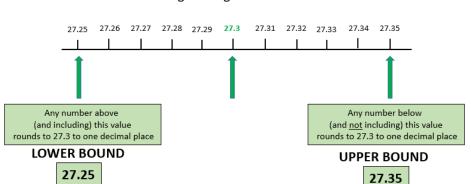
Standard index form	Ordinary form
1 x 10 ³	1000
1 x 10 ²	100
1 x 10 ¹	10
1 x 10°	1
1 x 10 ⁻¹	0.1
1 x 10 ⁻²	0.01
1 x 10 ⁻³	0.001

375 400

upper bound

The length of a book is 27.3 cm to one decimal place. What is the upper bound of the book length?

The upper bound is +0.05cm


27.25 ≤ book length < 27.35

The upper bound is 27.35cm

Picture, model, or diagram

The length of a book is 27.3 cm to one decimal place What is the longest length the book could be?

Improvement and Advisory Service

Non-Example

The lower bound is -0.05cm

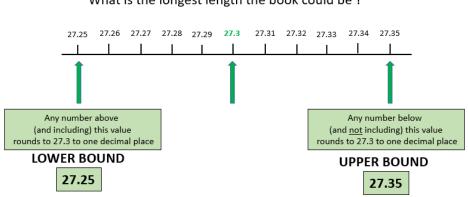
27.25 ≤ book length < 27.35

The lower bound is 27.25cm

lower bound

The length of a book is 27.3 cm to one decimal place. What is the lower bound of the book length?

The lower bound is -0.05cm


27.25 ≤ book length < 27.35

The lower bound is 27.25cm

Picture, model, or diagram

The length of a book is 27.3 cm to one decimal place What is the longest length the book could be?

Improvement and Advisory Service Non-Example

The upper bound is +0.05cm

27.25 ≤ book length < 27.35

The upper bound is 27.35cm

Evaluate 7x - 10 when x = 12

substitute x = 12 into the expression

$$7(12) - 10 = 74$$

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

х	х	х	х	х	х	х	-10
12	12	12	12	12	12	12	-10

Find x when 7x - 10 = 74Solve for x

$$7x = 84 (÷ 7)$$

$$x = 12$$

inequality

 $73 \le t < 81$

Picture, model, or diagram

Improvement and Advisory Service

$$t = 80$$

expand (brackets)

$$(x + 3) (x - 5) = x^2 - 2x - 15$$

+3

+3x

-15

Х

 \mathbf{x}^{2}

-5x

-5

Picture, model, or diagram

F = first pair O = outer pair

I = inner pair

L = last pair

$$(x+3)(x-5) = x^2 - 5x + 3x$$

$$(x+3)(x-5) = x^2 - 5x + 3x - 15$$

Improvement and Advisory Service

$$3 \times 4 + 7 \times 4 = 10 \times 4$$

factorise

$$x^2 - 2x - 15 = (x + 3) (x - 5)$$

Picture, model, or diagram

Improvement and Advisory Service Non-Example

Example

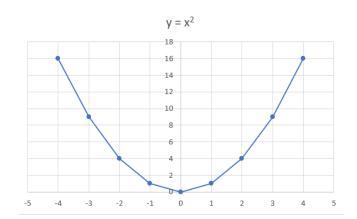
 $10 \times 4 = 3 \times 4 + 7 \times 4$

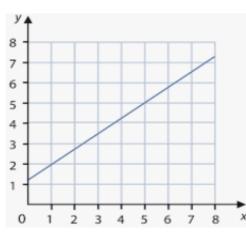
Which pair also sum to -2 For the x-term?

$$-2 = +3 - 5$$

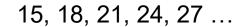
quadratic (function)

$$y = 3x^2 + 5x - 6$$


In general, quadratic functions are of the form $y=ax^2+bx-c$


Picture, model, or diagram

Improvement and Advisory Service



$$y = x^2$$

 $y = ax^2 + bx - c$
 $(a = 1; b = 0; c = 0)$

$$y = x + 1$$

nth term

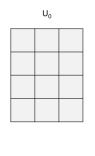
The nth term of this sequence is

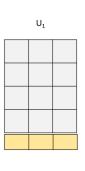
$$3n+12$$
 $U = 3r$

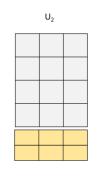
$$U_n = 3n+12$$

$$n=1$$
, $U_1 = 3(1) + 12 = 15$

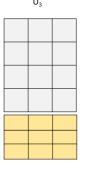
$$n=2$$
, $U_2 = 3(2) + 12 = 18$

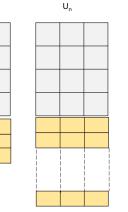

$$n=3$$
, $U_3 = 3(3) + 12 = 21$




Picture, model, or diagram

Improvement and Advisory Service


Non-Example



 $U_n = 3n+12$

15, 18, 21, 24, 27 ...

algebraic fraction

$$\frac{x^2}{x+3}$$

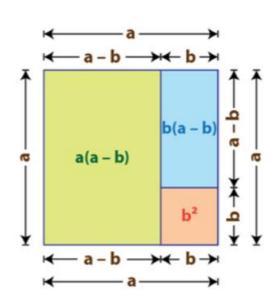
Picture, model, or diagram

Improvement and Advisory Service

$$y = \frac{x^2}{x+3} \text{ for } x > -3$$

$$2x(x + 4)$$

identity (≡)


$$a^2 - b^2 \equiv (a + b) (a - b)$$

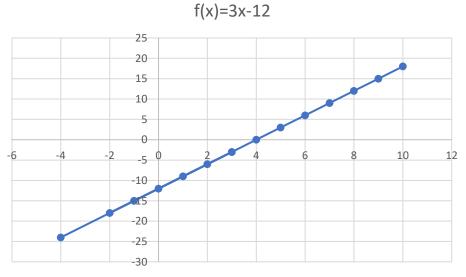
$$(a - b) (a + b) = a^2 + ab - ab - b^2$$

Picture, model, or diagram

Improvement and Advisory Service

function

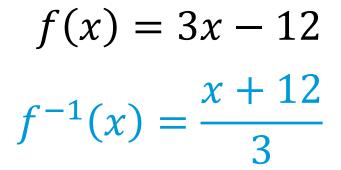
$$_{\mathbf{f}}f(x)=3x-12$$



Picture, model, or diagram

Imp Adv

Improvement and Advisory Service


Non-Example

3x - 12

inverse function

$$f^{-1}(x)$$

Picture, model, or diagram

Improvement and Advisory Service

$$3x - 12$$

composite function gf (x)

$$f(x) = x + 4$$
$$g(x) = x^2$$

$$gf(x) = (x + 4)^2$$

Picture, model, or diagram

Improvement and Advisory Service

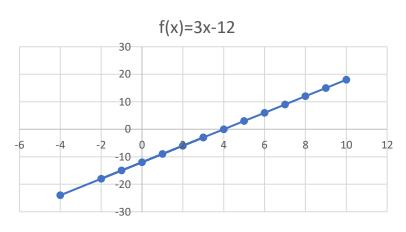
$$g(x) = x^2$$

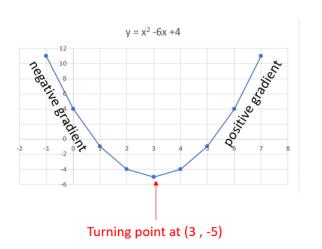
turning point

$$y = x^2 - 6x + 4$$

Complete the square

$$y = (x-3)^2 - 5$$


turning point is at (3,-5)


Picture, model, or diagram

Non-Example

This linear graph has no turning point

iteration

Use the iterative formula $x_{n+1} = 1 + \frac{11}{x_n - 3}$ and the starting value $x_1 = -2$ to find a value for x_4

$$x_2 = 1 + \frac{11}{-2 - 3}$$
 $x_2 = -1.2$

$$x_3 = 1 + \frac{11}{-1.2 - 3}$$
 $x_3 = -1.619$

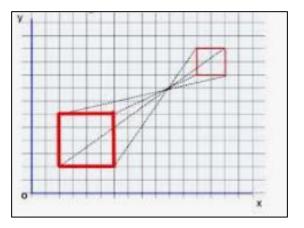
$$x_4 = 1 + \frac{11}{-1.619 - 3}$$
 $x_4 = -1.381$

Picture, model, or diagram

Improvement and

Non-Example

Advisory Service

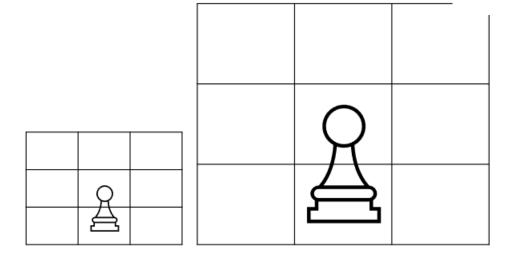

Substitute x = -2 into the equation $y = 1 + \frac{11}{x-3}$ to find the value of y

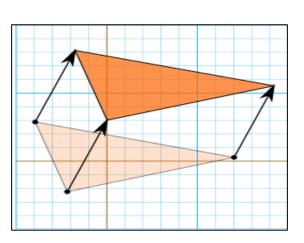
$$y = 1 + \frac{11}{-2 - 3}$$

$$y = -1.2$$

$$x_{n+1} \qquad 1 + \frac{11}{x_n - 3}$$

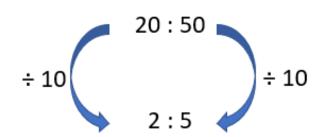
scale factor


This is an enlargement with a scale factor of -2


Picture, model, or diagram

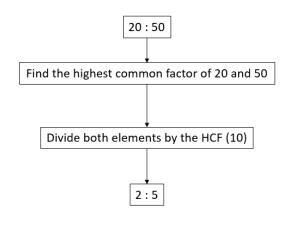
Improvement and Advisory Service

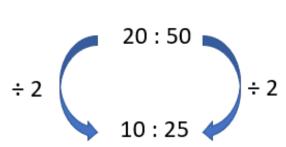
Non-Example



Scale factor 2 corresponding edges are twice as long

This is a translation.


reduce (to simplest form)



Picture, model, or diagram

Improvement and Advisory Service

percentage (decrease)

A watch is bought at a car boot sale for £50. It is later sold in a shop for £25. What is the percentage loss?

The watch has decreased by £25
The percentage decrease is
(difference / original) x 100 = 25/50 x 100 = 50%
A 50% loss has been made.

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

original cost		
sold price	loss (difference)	

The percentage decrease is (difference - original) x 100

A watch is bought at a car boot sale for £40. It is later sold in a shop for £50. What is the percentage profit?

The watch has increased by £10
The **percentage increase** is
(difference / original) $x 100 = 10/40 \times 100 = 25\%$ 25% profit has been made.

percentage (increase)

A watch is bought at a car boot sale for £40. It is later sold in a shop for £50. What is the percentage profit?

The watch has increased by £10
The percentage increase is
(difference / original) $x 100 = 10/40 \times 100 = 25\%$ 25% profit has been made.

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

sold price		
original cost	difference	

The percentage increase is (difference ÷ original) x 100

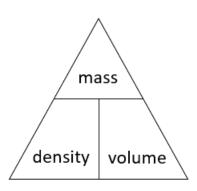
A watch is bought at a car boot sale for £50. It is later sold in a shop for £25. What is the percentage loss?

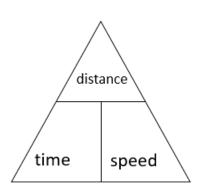
The watch has decreased by £25 The **percentage decrease** is (difference / original) $x 100 = 25/50 \times 100 = 50\%$ A 50% loss has been made.

compound (units)

Calculate the density of aluminium if 20 cm³ has a mass of 54 g.

Density = mass
$$\div$$
 volume
= $54 \div 20$


= 2.7 g / cm³ (grams per cubic centimetre) **Density is measured using compound units**



Picture, model, or diagram

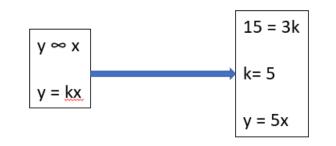
Improvement and Advisory Service

Non-Example

The mass of one apple is 10 grams

Calculate the mass of 5 apples

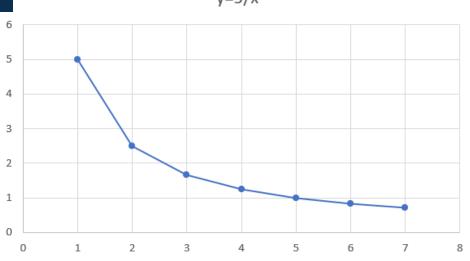
$$10g \times 5 = 50g$$


y is directly proportional to x

when
$$x = 3$$
, $y = 15$

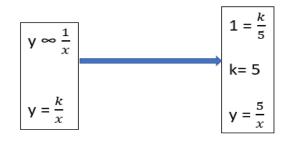
write an equation for y in terms of x

directly proportional



Picture, model, or diagram

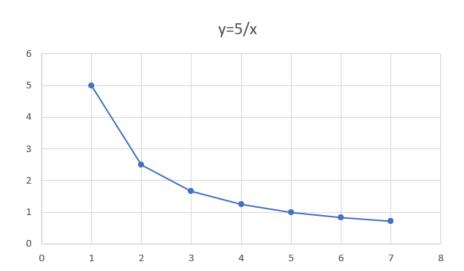
This graph shows direct proportion



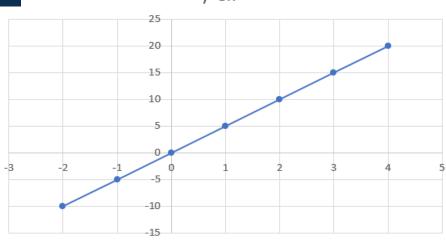
This graph shows inverse proportion

y is inversely proportional to x

when
$$x = 5$$
, $y = 1$


write an equation for y in terms of x

inversely proportional


Picture, model, or diagram

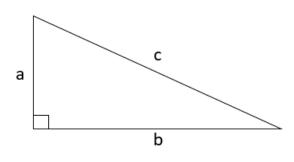
This graph shows inverse proportion

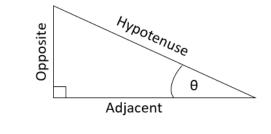
Improvement and Advisory Service

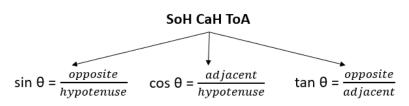
y=5x

This graph shows direct proportion

trigonometric ratio (trigonometry)

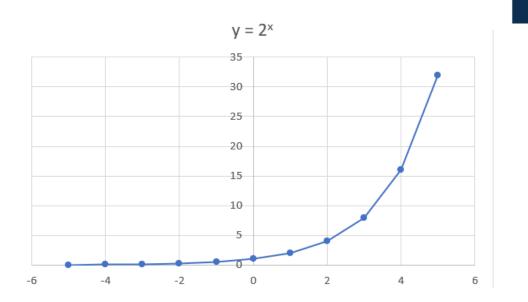

$$\cos \theta = \frac{adjacent}{hypotenuse}$$


Picture, model, or diagram


Improvement and

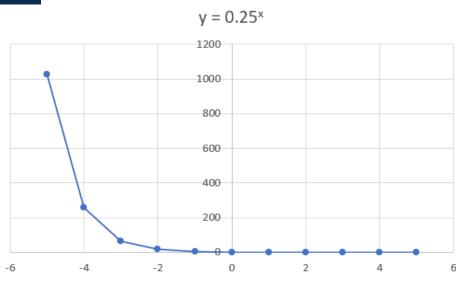
$$a^2 + b^2 = c^2$$

exponential growth


A population of rabbits doubles every month.

The population is growing exponentially.

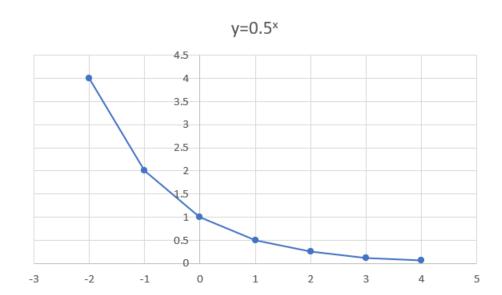
Month	Number of rabbits
1	2 = 2 ¹
2	4 = 22
3	8 = 2 ³
4	16 = 2 ⁴
5	32 = 2 ⁵
6	64 = 2 ⁶
n	2 ⁿ



Picture, model, or diagram

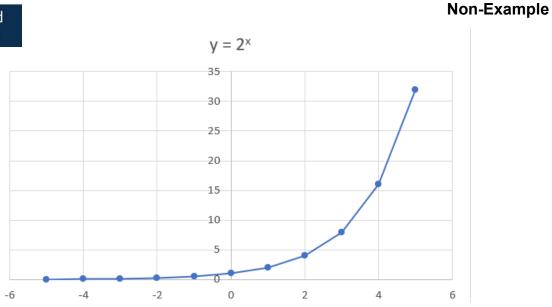
Improvement and Advisory Service

Year	Grams of salt
1	2500000
2	1250000
3	625000
4	312500
5	156250
6	78125
7	39063
8	19531
9	9766
10	4883
11	2441
12	1221
13	610
14	305


153

15

A restaurant decreases its salt use by 50% per year. In year 0, the restaurant uses 5,000,000 grams of salt.
Salt usage is decaying exponentially.

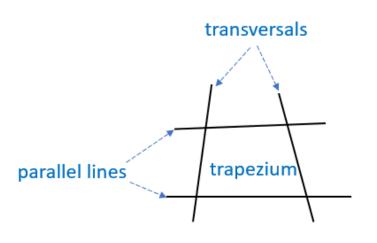


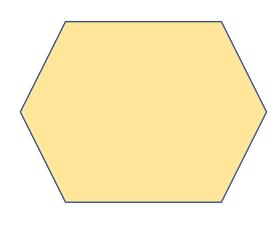
Picture, model, or diagram

exponential decay

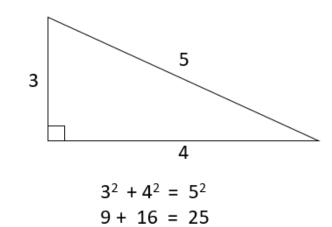
Improvement and Advisory Service

trapezium (-a)





Picture, model, or diagram


Improvement and Advisory Service

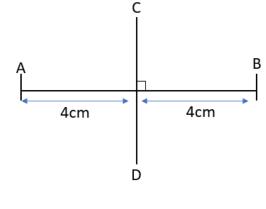
Non-Example

Pythagoras' Theorem

Picture, model, or diagram

Improvement and Advisory Service

Non-Example


$$a^2 + b^2 = c^2$$

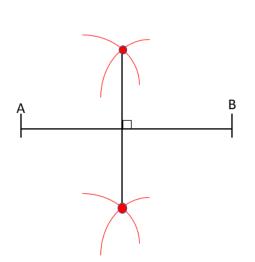
$$\cos \theta = \frac{adjacent}{hypotenuse}$$

Example

perpendicular bisector

Join the arcs

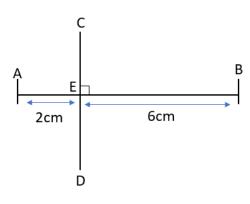
AB = 8cm


CD bisects AB at 90°

Picture, model, or diagram

Improvement and Advisory Service

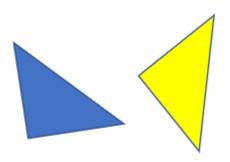
Non-Example



Use a pair of compasses.

Place the point on A and open the compasses to over half way

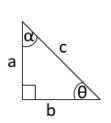
Make an arc above and below the line.

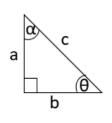

Repeat from B

AB = 8cm

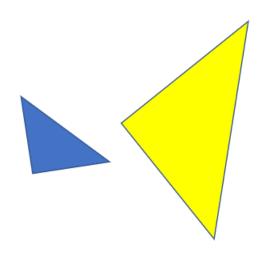
CD intersects AB at 90° at E

congruent

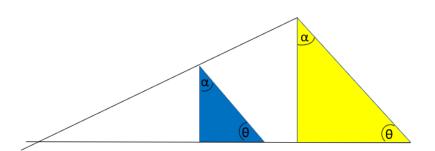




Picture, model, or diagram


Improvement and Advisory Service

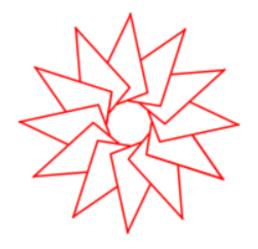
These triangles are congruent
All corresponding angles are the same size
All corresponding sides are the same length



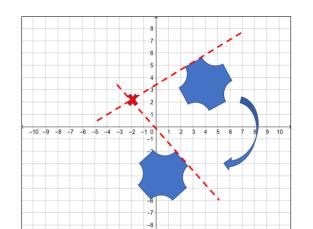
similar

Picture, model, or diagram

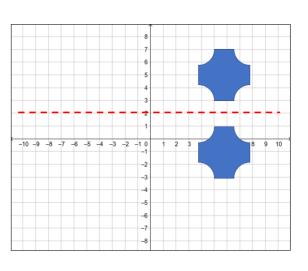
Improvement and Advisory Service


These triangles are similar
All corresponding angles are the same
All corresponding sides are proportional

Example


Non-Example

rotation


Picture, model, or diagram

This is a rotation of 90° clockwise about the point (-2, 2)

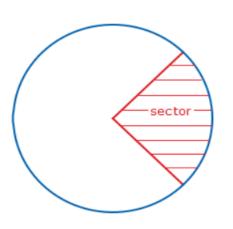
Improvement and Advisory Service

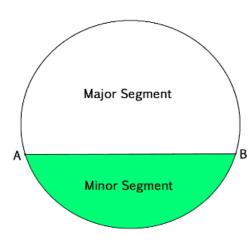
Sector area is $\frac{60}{360}$ of the circle area

Sector area =
$$\frac{1}{6}$$
 x π x 4 x 4

Sector area ≈ 8.4 cm²

sector




Picture, model, or diagram

Improvement and Advisory Service

Example

The area of a major segment is twice the area of the minor segment. What is the area of the minor segment?

Area of circle =
$$\pi$$
 r²

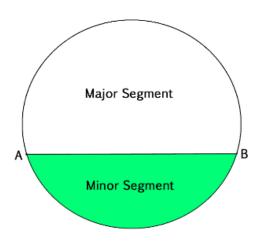
Area =
$$9\pi$$
 cm²

$$Area_{minor}$$
: $Area_{major}$

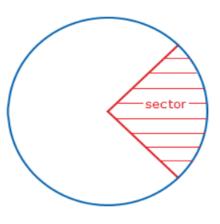
1:2

3:6

Area of minor segment = 3π cm²

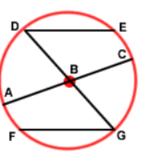


Picture, model, or diagram


Improvement and Advisory Service

Non-Example

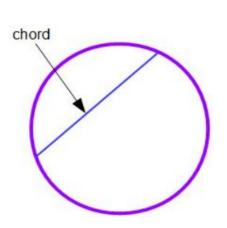
Example

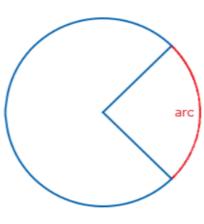


segment

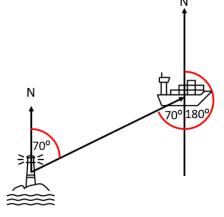
chord

All these lines are chords
DG and AC are also diameters


The diameter is the longest possible chord in a circle

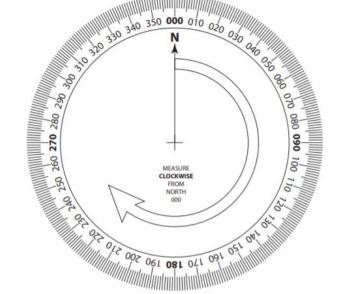


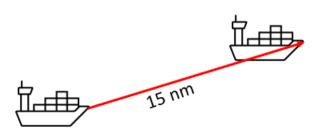
Picture, model, or diagram


Improvement and Advisory Service

Non-Example

bearing

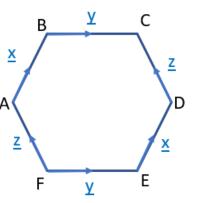

The bearing of the lighthouse from the ship is 250°



Picture, model, or diagram

Improvement and Advisory Service

Non-Example



These ships are 15 nautical miles apart

Non-Example

vector

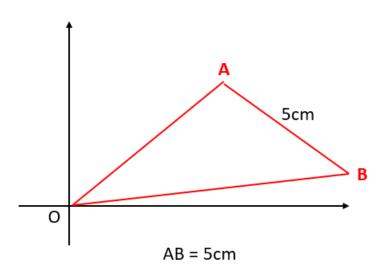
ABCDEF is a regular hexagon

$$\overrightarrow{AB} = \overrightarrow{ED} = \underline{x}$$

$$\overrightarrow{BC} = \overrightarrow{FE} = \underline{y}$$

$$\overrightarrow{DC} = \overrightarrow{FA} = \underline{z}$$

Find
$$\overrightarrow{BE}$$
 = \overrightarrow{BC} - \overrightarrow{DC} - \overrightarrow{ED} = $\underline{y} - \underline{z} - \underline{x}$



Picture, model, or diagram

 $\frac{\underline{a}}{AB} = \underline{b} - \underline{a}$

A vector has magnitude and direction

Improvement and Advisory Service

A length has magnitude but no direction

In a probability experiment, coloured counters were taken from a bag without looking and then replaced

Colour	Frequency	Relative Frequency
Purple	7	0.35
Blue	3	0.15
Pink	5	0.25
Orange	5	0.25
Total	20	1.00

The relative frequency of the event 'select blue' is 0.15

relative frequency

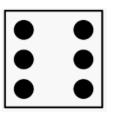
Picture, model, or diagram

Improvement and Advisory Service

100%			
35%	15%	25%	25%

The relative frequency shows the proportion of the total for each event occurring. It can represented as a fraction, a decimal or a percentage.

Non-Example


In a probability experiment, coloured counters were taken from a bag without looking and then replaced. This was repeated twenty times.

Colour	Frequency
Purple	7
Blue	3
Pink	5
Orange	5
Total	20

'Blue' was selected three times

outcome

Roll a fair 1-6 die

'6' is one possible outcome

Picture, model, or diagrar

Event: Roll a fair 1-6 die

Outcomes

Improvement and Advisory Service

Non-Example

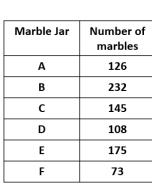
Roll a fair 1-6 die

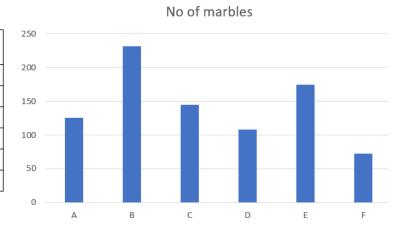
'7' is impossible and so is **not** an outcome

random (variable)

A discrete random variable:

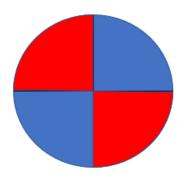
The number of marbles in a jar


A continuous random variable:


The number of seconds taken to complete a race

Picture, model, or diagram

A variable that can take on different values


Improvement and Advisory Service

Non-Example

A sample of exactly 10 marbles from each jar

Non-Example

fair

This spinner is fair.

There is an equal chance of 'blue' and 'red'.

Picture, model, or diagram

Outcomes

Second spin Second spin Blue Red Red Blue First spin Blue First spin Blue 0.25 0.25 RRRB0.25 0.25 BR BB

When using two fair spinners, the probability of each outcome is the same (0.25)

Probability

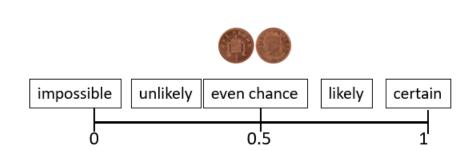
Improvement and Advisory Service

This spinner is unfair.

There is a greater chance of 'blue' than 'red' or 'yellow'

Non-Example

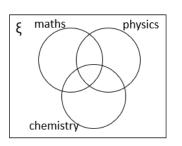
probability scale (0-1)



Event: Toss a coin The probability of getting a 'head' is 0.5 The probability of getting a 'tail' is 0.5

Picture, model, or diagram

Improvement and Advisory Service



Event: Toss a coin A 'head' was the result 53 times

Venn diagram

In a year group of 142 students:

23 study only maths

18 study only physics

60 study physics

45 study only chemistry

32 study physics and chemistry only

8 study none of these subjects

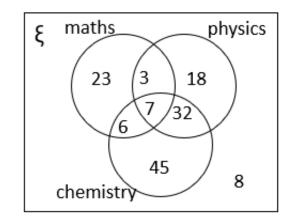
7 study all three subjects

How many study mathematics and chemistry only?

Step one: Fill all the information into the diagram

Step two: Subtract the number of students accounted for from 142

Solution: 6 students studied maths and chemistry only

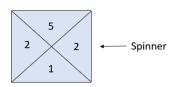

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

Example

ξ	maths	physics
)
	chemistry	_



Subject	No of students
Maths	39
Physics	60
Chemistry	90

This table shows the number of students studying each subject

The spinner is spun **twice** and the score is **added** and recorded in the sample space table below

+	1	2	2	5
1				
2				
2				
5				

Use the sample space to record all possible outcomes and hence work out the probability of scoring more than 4

sample space

Picture, model, or diagram

Improvement and Advisory Service

+	1	2	2	5
1	2	3	3	6
2	3	4	4	7
2	3	4	4	7
5	6	8	7	10

P(more than 4) =
$$\frac{7}{16}$$

Non-Example

Frequency
7
3
5
5
20

exhaustive set

If a coin in tossed, there are two possible outcomes **Heads** or **Tails**

The probability of getting a head or a tail is 100%

'Heads and Tails' are an exhaustive set

An exhaustive set contains all possible outcomes

Picture, model, or diagram

Event: Roll a fair 1-6 die

		10	0%		
1	2	3	4	5	6

Event: Toss a coin

100%	
Н	Т

Improvement and Advisory Service

Non-Example

If a fair six-sided (1-6) die is rolled ten times and the outcomes are: 6,6,4,4,3,4,3,5,6,2

The set of actual outcomes is not exhaustive, since 1 has not appeared

empirical

The theoretical probability of rolling a 6 on a fair 1-6-sided die is $\frac{1}{6}$

We can carry out a number of trials to gather empirical data to test this.

Picture, model, or diagram

Event: Roll a fair 1-6 die

Result	Frequency
1	45
2	42
3	39
4	47
5	38
6	44

A probability experiment collects empirical data

Improvement and Advisory Service Non-Example

The theoretical probability of rolling a 6 on a fair

1-6-sided die is $\frac{1}{6}$

We can use this **theoretical** probability to work out the probability of rolling a 4

5

6

Result	number of each outcome number of possible outcomes	
1	1	
	6	
2	1	
	6	
3	1	
	6	
4	1	
	6	

$$P(4) = \frac{1}{6}$$

Non-Example

Hampshire County Council

Picture, model, or diagram

Improvement and Advisory Service

Event: Roll a fair 1-6 die

theoretical

(probability)

1	2	3	4	5	6
1	1	1	1	1	1
$\frac{\overline{6}}{6}$	6	6	$\frac{\overline{6}}{6}$	$\frac{\overline{6}}{6}$	$\frac{\overline{6}}{6}$

For a fair die, each number has an equal chance in theory

Event: Roll a fair 1-6 die

Result	Frequency
1	45
2	42
3	39
4	47
5	38
6	44

A probability experiment collects empirical data

independent

Landing on heads after tossing a coin AND rolling a 5 on a single 6-sided die are examples of independent events.

Picture, model, or diagram

The probability of Event 2 is independent of Event 1

Improvement and Advisory Service

Non-Example

A card is chosen at random from a standard deck of 52 playing cards. **Without replacing it**, a second card is chosen.

What is the probability that the first card chosen is a Queen and the second card chosen is a Jack?

P(Queen) = 4 / 52 ; P(Jack) = 4 / 51

P(Queen and a Jack) = 4 / 52 x 4 / 51 = 16 / 2652

P(Queen and a Jack) = 4 / 663

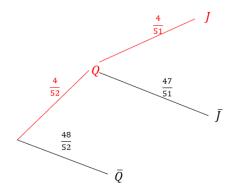
The probability of the Jack is dependent on the probability of the Queen.

A card is chosen at random from a standard deck of 52 playing cards. **Without replacing it**, a second card is chosen.

What is the probability that the first card chosen is a queen and the second card chosen is a jack?

P(Queen and a Jack) = 4 / 663

The probability of the Jack is **dependent** on the probability of the Queen.


dependent

Picture, model, or diagram

Event 1: Draw a card, do not replace

Event 2: Draw a card

The probability of drawing a Jack second is dependent on whether or not a Queen was drawn first

Improvement and Advisory Service

Non-Example

Landing on heads after tossing a coin AND rolling a 5 on a single 6-sided die are examples of **independent** events.

	Have pets	Do not have pets	Total
Male	0.41	0.08	0.49
Female	0.45	0.06	0.51
Total	0.86	0.14	1

conditional

What is the (conditional) probability that a randomly selected person is male, given that they have a pet?

P(male and have a pet) = 0.41 P(have a pet) = 0.86 P(male | have a pet) = 0.41 / 0.86 = 0.477

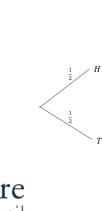
Picture, model, or diagram

Improvement and Advisory Service

Non-Example

P(male have a pet) =	P (male U have a pet)
	P (have a pet)

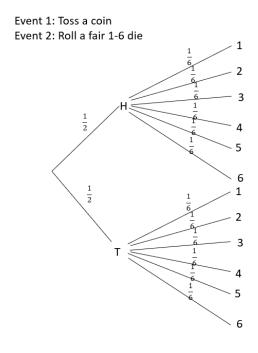
ξ Male	Have pet
0.08	0.41 0.45 0.06


Event	Н	Т
Н	нн	нт
Т	TH	TT

There are four possible outcomes when a fair coin is tossed twice

Use a tree diagram to work out the probability of HH

Outcomes


tree diagram

$$P(HH) = \frac{1}{4}$$

Picture, model, or diagram

Improvement and Advisory Service

No	n-E	xa	m	p	1

Event	Н	Т
Н	НН	НТ
Т	TH	TT

grouped (data)

Observed data arising from counts and grouped into non-overlapping intervals is called grouped data.

The length of feet of 25 planks of wood were measured.

The lengths were grouped into classes of width 10 feet.

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

The number of different colour smarties in a pack of 25

It is not possible to group the data as each colour is separate

colour	Frequency (f)
Green	2
Orange	6
Blue	9
Yellow	5
Purple	3

Length (feet)	Frequency (f)
0≤ ft<10	2
10≤ ft<20	6
20≤ ft<30	9
30≤ ft<40	5
40≤ ft<50	3

mean (\bar{x})

The mean average of 6, 11, 16 is 11

$$(6 + 11 + 16) \div 3 = 11$$

$$\bar{x} = 11$$

Picture, model, or diagram

11 counters counters counters

The mean (\bar{x}) can be thought of as 'equal' shares

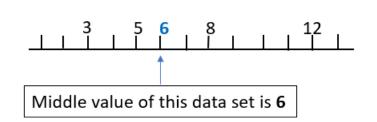
Improvement and Advisory Service

Non-Example

The **median** of 12, 6, 3, 5, 8 is 6

3, 5, **6**, 8, 12

median


The **median** of 12, 6, 3, 5, 8 is 6

3, 5, <u>6</u>, 8, 12

Picture, model, or diagram

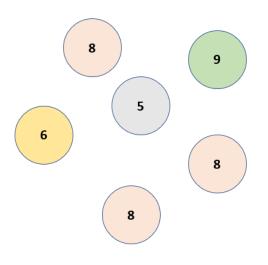
Improvement and Advisory Service Non-Example

The mode of 8, 5, 6, 8, 9, 8 is 8

5, 6**, 8, 8, 8**, 9

mode

The mode of 8, 5, 6, 8, 9, 8 is 8


5, 6**, <u>8, 8, 8</u>**, 9

Picture, model, or diagram

Improvement and Advisory Service

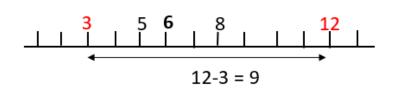
Non-Example

'8' occurs most frequently

The **median** of 12, 6, 3, 5, 8 is 6

3, 5, <u>6</u>, 8, 12

The **range** of 12, 6, 3, 5, 8 is 9


It is the difference between the maximum (12) and the minimum (3) value in the set.

$$12 - 3 = 9$$

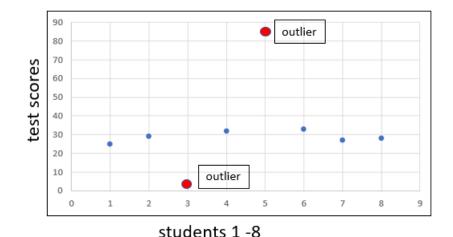
Picture, model, or diagram

Improvement and Advisory Service Non-Example

The range of this data set is 9

The **median** of 12, 6, 3, 5, 8 is 6

3, 5, <u>6</u>, 8, 12


outlier

In a maths test, the following marks were scored: 25, 29, **3**, 32, **85**, 33, 27, 28
Both 3 and 85 are outliers.
They lie outside the main cluster of scores.

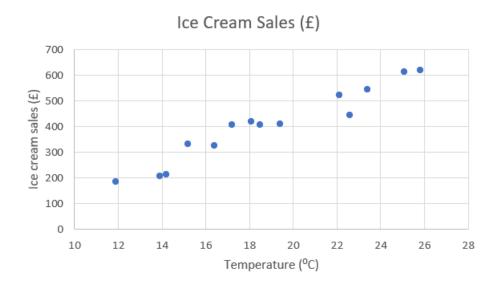
Picture, model, or diagram

Improvement and Advisory Service Non-Example

$$85 - 3 = 82$$

25, 29, 3, 32, 85, 33, 27, 28 The range of scores is 82

In a maths test, the following marks were scored:


Ice cream sales versus the temperature on that day.
The two variables are 'ice cream sales' and 'temperature'.

The warmer the temperature, the more ice creams are sold. 'Temperature' and 'ice cream sales' are bivariate.

Temperature (°C)	Ice Cream Sales (£)	
14.2	215	
16.4	325	
11.9	185	
15.2	332	
18.5	406	
22.1	522	
19.4	412	
25.1	614	
23.4	544	
18.1	421	
22.6	445	
17.2	408	
13.9	207	
25.8	620	

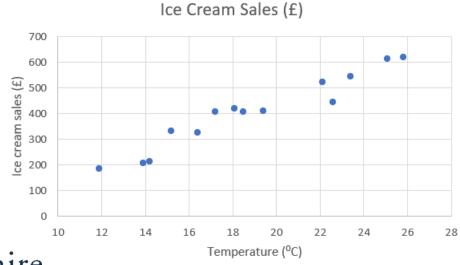
Picture, model, or diagram

With bivariate data we have **two** sets of related data we want to **compare**.

Improvement and Advisory Service

Non-Example

Univariate means one variable (one type of data)

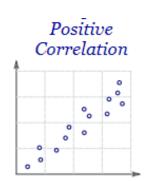

Example: travel time (minutes):

15, 29, 8, 42, 35, 21, 18, 42, 26

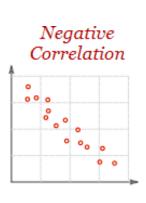
The variable is **travel time**

Bivariate data

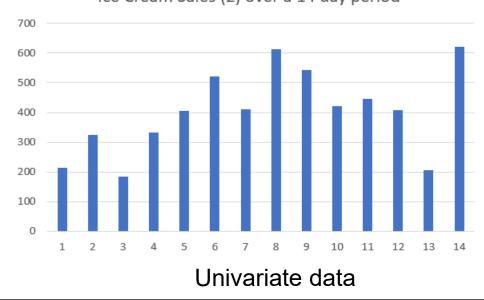
scatter graphs



Example


Non-Example

Picture, model, or diagram



Scatter graphs are used to compare two sets of data.

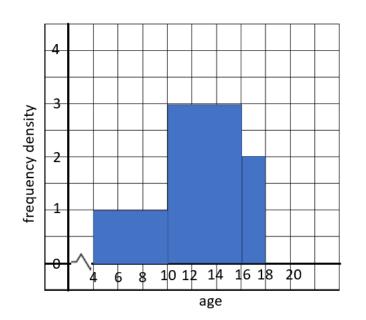
Positive correlation means that as one variable increases, so does the other. No correlation means that one variable does not have an effect on the other. Negative correlations means that as one variable increase, the other decreases.

Improvement and Advisory Service

Ice Cream Sales (£) over a 14 day period

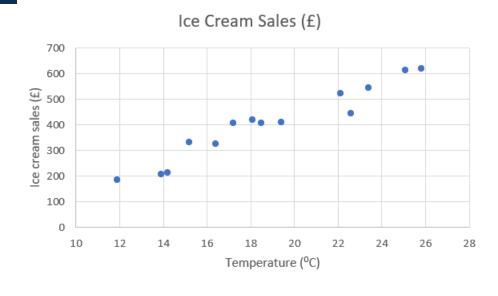
Histograms look like bar charts but the area of the bar represents the frequency, not the height.

The class widths can be unequal in a histogram.


The ages of 28 children on a school trip

Age	Frequency	Class width	Frequency density
4-9	6	6	6÷6=1
10-15	18	6	18÷6=3
16-17	4	2	4÷2=2

histogram



Picture, model, or diagram

Improvement and Advisory Service

Non-Example

Non-Example

sample

Sample: a collection of data from **part** of the population.

Example: a random selection of five buttons from a box of forty buttons.

Picture, model, or diagram

(H)

(H)

(H) (H) (H)

(H)

(H)

Improvement and Advisory Service

(H)

(H) (H) (B) (H)

This is the population ~ all the 40 buttons in the box

(H)

The blue buttons are a random sample from the population

Non-Example

population

Population: the whole group we are interested in.

Example: all the buttons in a box of 40 buttons.

Picture, model, or diagram

This is the population ~ all the 40 buttons in the box

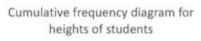
(H)

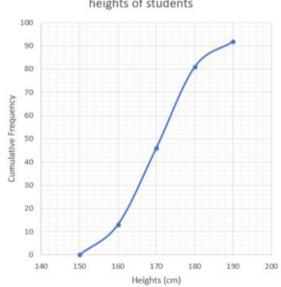
(H)

(H)

Improvement and Advisory Service

(H) (H) (H) (H)


The blue buttons are a random sample from the population


cumulative frequency

Heights, h (cm)	Frequency	Cumulative frequency
150 < h ≤ 160	13	13
150 < h ≤ 160	33	46
150 < h ≤ 160	35	81
150 < h ≤ 160	11	92

Picture, model, or diagram

Improvement and Advisory Service

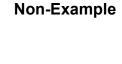
Non-Exampl	ı
------------	---

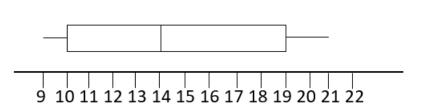
Heights, h (cm)	Frequency
150 < h ≤ 160	13
150 < h ≤ 160	33
150 < h ≤ 160	35
150 < h ≤ 160	11

box plot (box and whisker diagram)

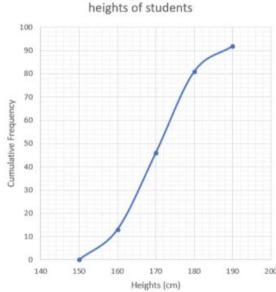
This data shows the ages of 11 people on a boat trip

The data is ordered and the median, quartiles, maximum and minimum values identified.


This is then plotted on a horizontal axis as a box for the middle 50% of the data, with 'whiskers' to show the first and last 25%.



Picture, model, or diagram


Improvement and Advisory Service

Cumulative frequency diagram for

9, 10, **10**, 12, 13, **14**, 17, 18, **19**, 21, **21**

Quartiles are the values that divide a list of numbers into quarters

Example: 5,7,4,4,6,2,8

Order: 2,4,4,5,6,7,8

Quarter the list:

Lower quartile (Q1) = 4

Median (Q2) = 5

Upper quartile (Q3) = 7

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

2,4,4,5,6,7,8 Q1 Q2 Q3 middle lower upper quartile quartile quartile

Lower quartile (Q1) = 4

Median (Q2) = 5

Upper quartile (Q3) = 7

The mode of 8, 5, 6, 8, 9, 8 is 8

5, 6, **8, 8, 8**, 9

Example: 5,7,4,4,6,2,8

Order: 2,4,4,5,6,7,8

Quarter the list:

Lower quartile (Q1) = 4

Median (Q2) = 5

Upper quartile (Q3) = 7

upper quartile

Picture, model, or diagram

Improvement and Advisory Service

Non-Example

Lower quartile (Q1) = 4 Median (Q2) = 5 Upper quartile (Q3) = 7 The mode of 8, 5, 6, 8, 9, 8 is 8

5, 6**, 8, 8, 8**, 9

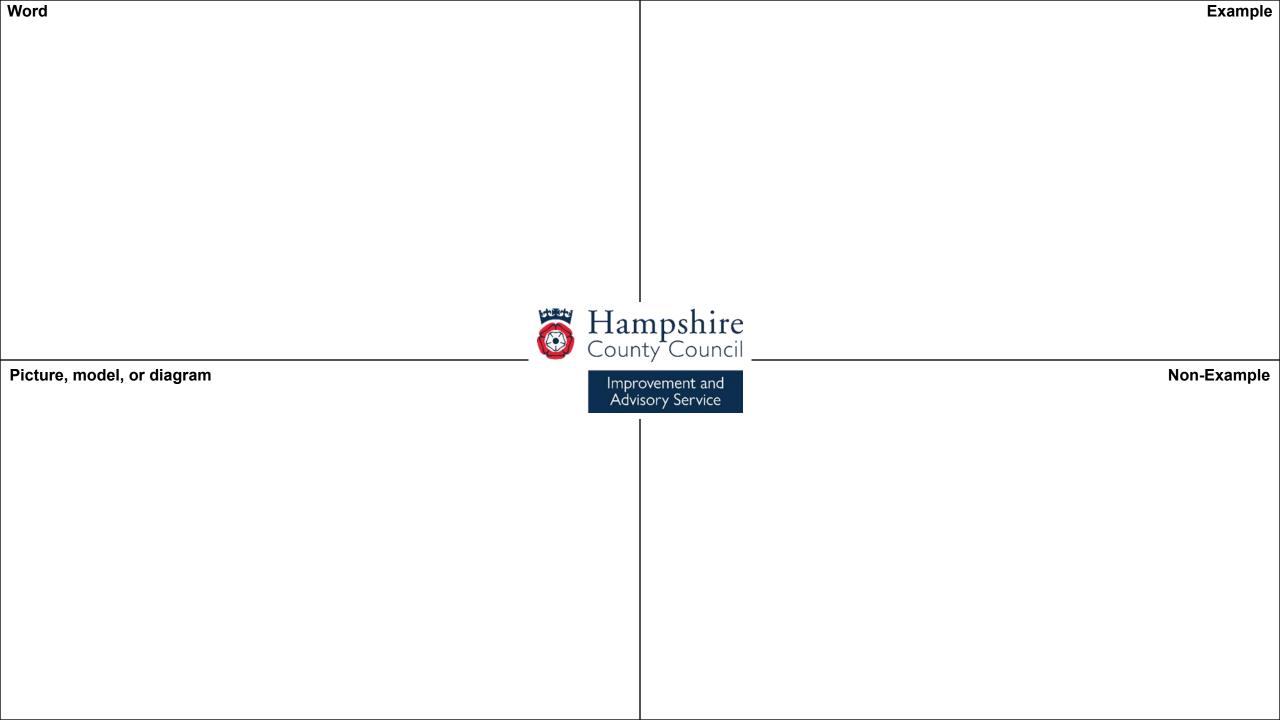
Example: 5,7,4,4,6,2,8

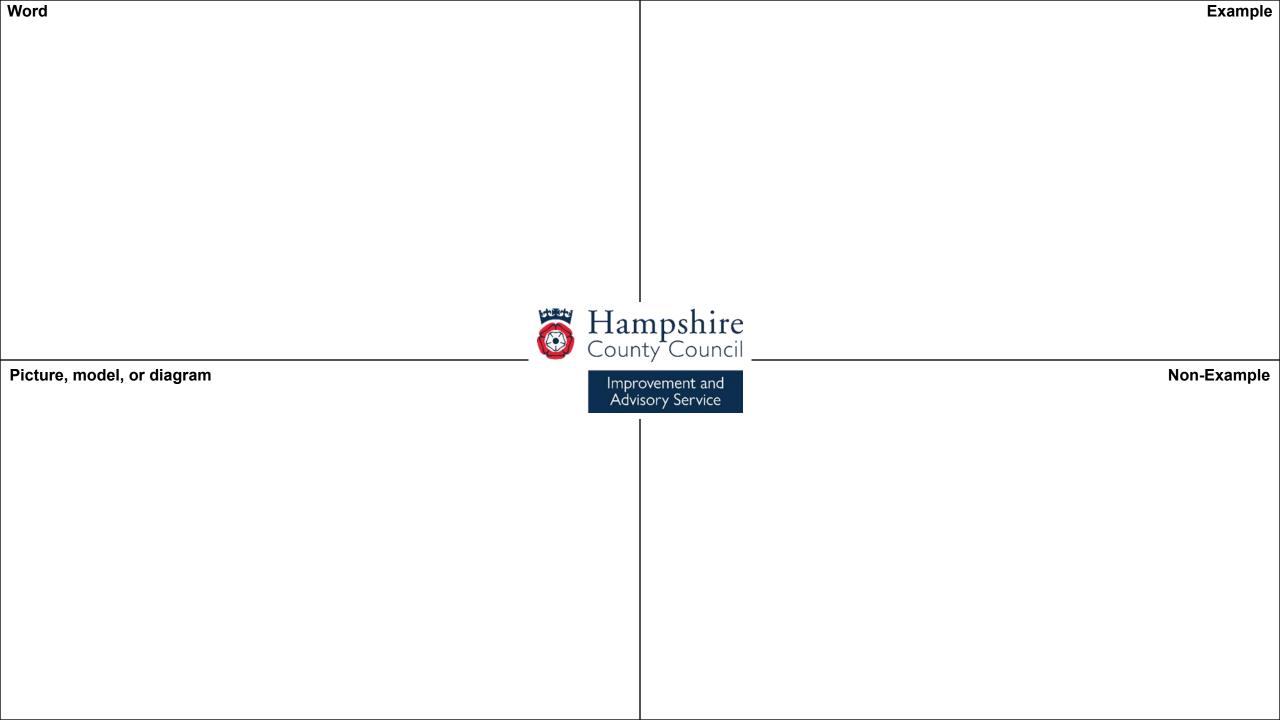
Order: 2,4,4,5,6,7,8

Quarter the list and find the difference between the upper and lower quartiles

Lower quartile (Q1) = 4 Median (Q2) = 5 Upper quartile (Q3) = 7 Inter quartile range (IQR) = 3

Picture, model, or diagram


inter quartile range


Lower quartile (Q1) = 4 Median (Q2) = 5 Upper quartile (Q3) = 7 Inter quartile range (IQR) = 7 - 4 = 3 Improvement and Advisory Service

Non-Example

2,4,4,5,6,7,8

The range for this data set is 8 - 2 = 6

