
Counting Starter

N	1illion	S	Th	ousan	ıds		Ones		-ths	
100s	10s	1s	100s	10s	1s	100s	10s	1s		
								0	0	1
								0	1	
								1	•	
							1	0		
						1	0	0		
					1	0	0	0		
				1	0	0	0	0		
			1	0	0	0	0	0		
		1	0	0	0	0	0	0		
	1	0	0	0	0	0	0	0		

Year 5 Number and Place Value: Session 1

Intelligent Practice

Represent each number:

12,035

47,506

51, 390

20, 817

73, 202

39,640

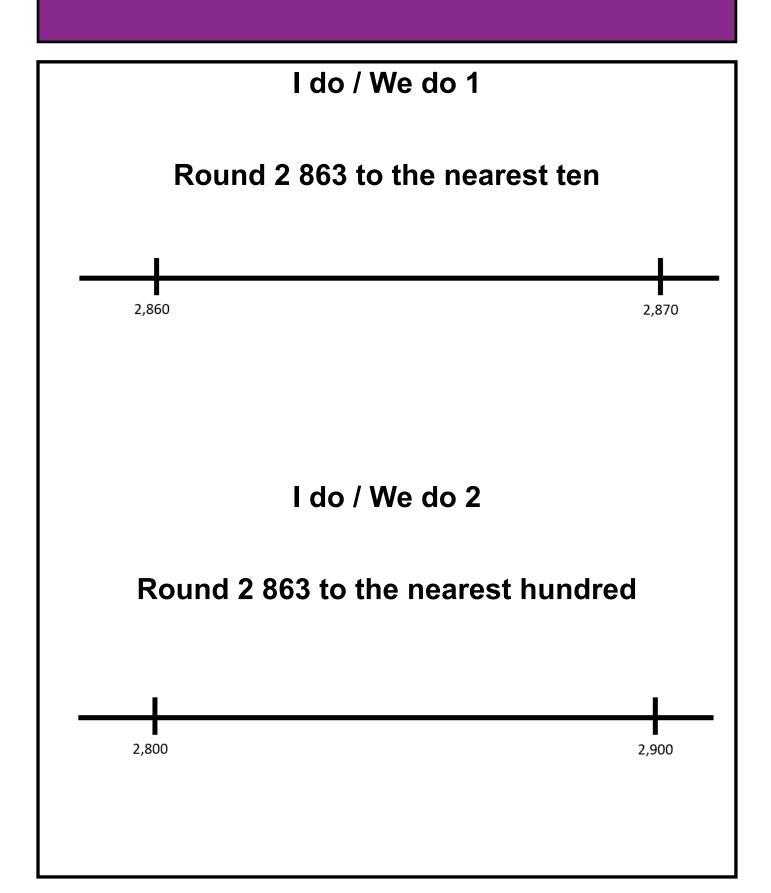
The digit in the ten thousands place is __. It has a value of ___.

The digit in the thousands place is __. It has a value of ___.

The digit in the hundreds place is a __. It has a value of ___.

The digit in the tens place is __. It has a value of ___.

The digit in the ones place is __. It has a value of ___.


Next Steps

What number is shown here?

$$30 + 9,000 + 500 + 70,000 =$$

Counting Starter

N	1illion	ıs	Thousands		Ones			-ths		
100s	10s	1s	100s	10s	1s	100s	10s	1s		
								0	0	1
								0	1	
								1	•	
							1	0		
						1	0	0		
					1	0	0	0		
				1	0	0	0	0		
			1	0	0	0	0	0		
		1	0	0	0	0	0	0		
	1	0	0	0	0	0	0	0		

Intelligent Practice

Round each number to the nearest multiple of ten and hundred.

2,035

7,506

5, 390

2,817

73, 202

39,640

place

		place:	
The	represents	. It has a value of	

I know that the is in the

The previous multiple of ____ is ___.

The next multiple of ___ is ___.

The mid point is ____.

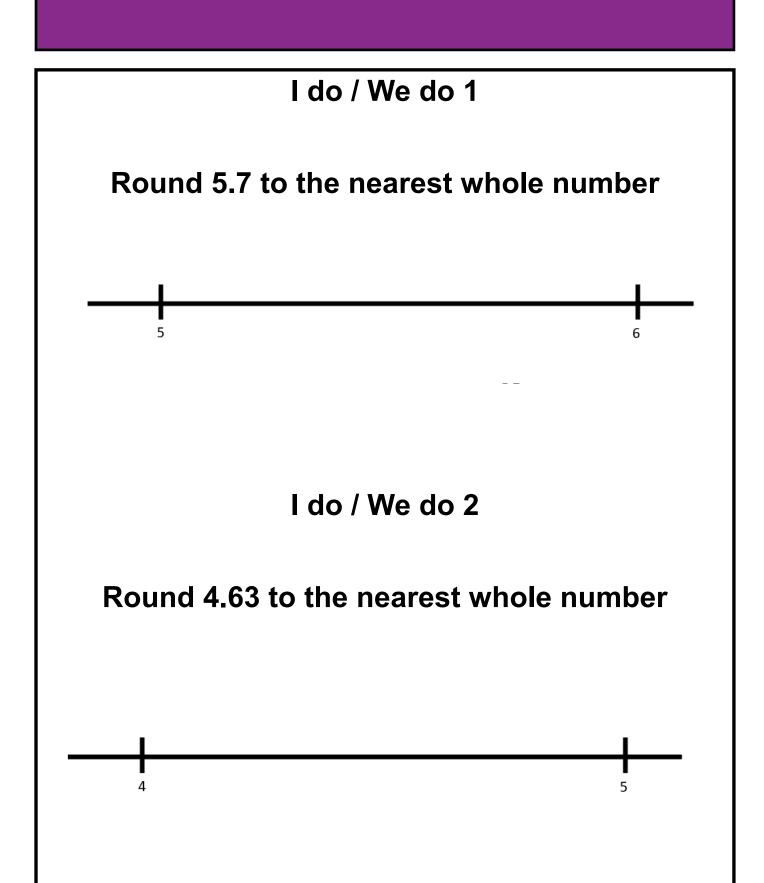
Year 5 Number and Place Value: Session 2

Next Steps

Position 6,929 on the number line.

Round to the nearest ten.

Round to the nearest hundred.


Round to the nearest thousand.

Year 5 Number and Place Value: Session 3

Counting Starter

Count up and down in tenths.

0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3
3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4
4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5
5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6
6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7
7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8
8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	9
9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10

Intelligent Practice

Round each number to the nearest whole number.

6.8

3.61

1.2

7.18

9.5

4.84

I know that the is in the ones place.
The represents It has a value of
The previous whole number is
The next whole number is
The mid point is

Next Steps

Circle the two decimals that round to the **same** whole number.

3.2 4.7 5.9 6.3 7.9

Counting Starter

Count up and down in hundredths.

0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.2
0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.3
0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.4
0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.5
0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.6
0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.7
0.61	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.8
0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.9
0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1

I do/We do 1 234 x 100 =

	10,000s	1,000s	100s	10s	1s
x10					
x100					

$$672 \times 100 =$$

	10,000s	1,000s	100s	10s	1 s
x10					
x100					

To multiply by 100, the digits all move ___ places to the ___

I do/We do 2 4500 ÷ 100 =

	10,000s	1,000s	100s	10s	1s
÷10					
÷ 100					

$$3200 \div 100 =$$

	10,000s	1,000s	100s	10s	1s
÷10					
÷ 100					

To divide by 100, the digits all move ___ places to the ___

Intelligent Practice

$$55 \times 10 =$$

$$55 \times 10 = 55 \times 100 =$$

$$505 \times 10 =$$

$$505 \times 10 = 505 \times 100 =$$

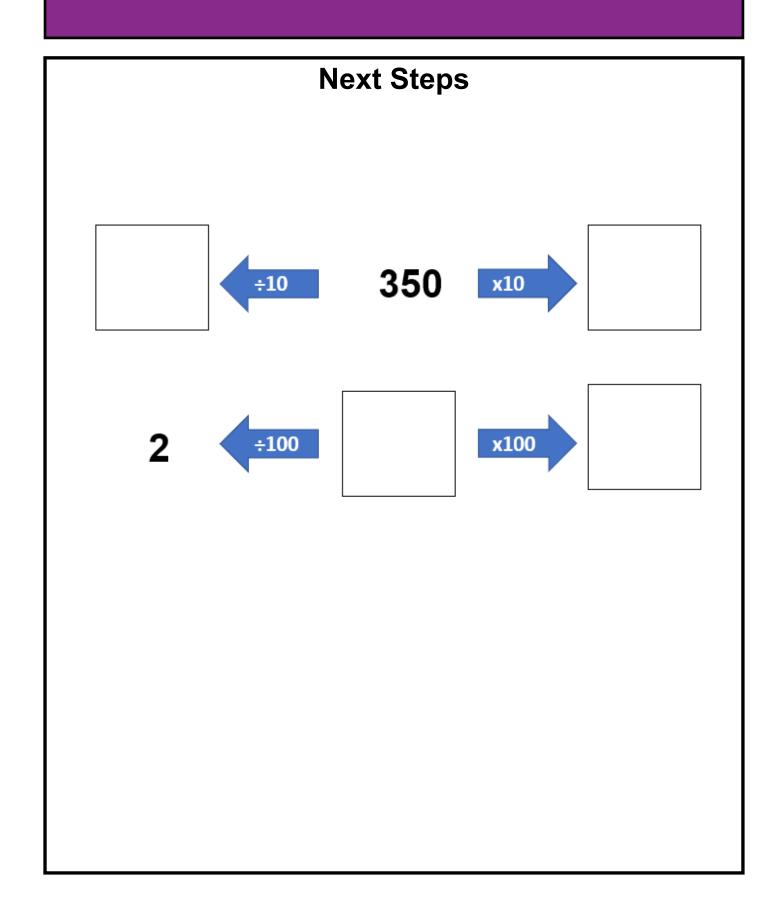
$$5050 \times 10 =$$

$$5050 \times 10 = 5050 \times 100 =$$

To multiply by 100, the digits all move ___ places to the ___

$$1.900 \div 10 =$$

$$1,900 \div 10 = 1,900 \div 100 =$$


$$9,100 \div 10 =$$

$$9,100 \div 10 = 9,100 \div 100 =$$

$$91,900 \div 10 =$$

$$91,900 \div 10 = 91,900 \div 100 =$$

To divide by 100, the digits all move ____ places to the ____

I do/We do

Addition

1000s	100s	10s	1s

Subtraction

1000s	100s	10s	1s

Intelligent Practice

Solve the following number sentences using partitioning.

Next Steps

$$1,000-654 = 999-653$$

Explain why this is correct.

Why is this strategy more efficient?

Intelligent Practice

Solve the following number sentences using rounding and adjusting

$$8097 - 999 =$$

$$8027 - 997 =$$

I will round to the nearest 1000 by adding ____ .

I will then adjust by subtracting/adding ____.

Next Steps

Jackson is working out 4671 - 999. He works out 4671 - 1000 = 3671. He then works out 3671 - 1 = 3670. His answer is 3670

What mistake has Jackson made?

How could you help him correct his answer?

I do/We do

Addition

10 000s	1000s	100s	10s	1s

Subtraction

10 000s	1000s	100s	10s	1s

Intelligent Practice

Solve the following number sentences using the formal column method.

Next Steps

56 713 + 2 069 =

What happens when you add 3 ones and 9 ones?

10 000s	1 000s	100s	10s	1s
•••	000	0000	•	• • •
	• •		000	••••

Can you use your place value knowledge to help you calculate the answer?

I do worded problem

Logan is playing a game. He has 3,324 points.

Then he scores another 999 points.

Logan's target is 6855 points.

How many more points does Logan need to reach his target?

We do worded problem

Logan is playing a game. He has 5,275 points.

Then he scores another 1,312 points.

Logan's target is 6600 points.

How many more points does Logan need to reach his target?

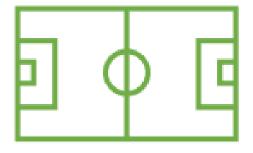
Intelligent Practice

Logan is playing a game. He has 5,275 points.

Then he loses 999 points.

Logan's target is 5000 points.

How many more points does Logan need to reach his target now?



Next Steps

Logan is playing a game. He has 2,301 points.

Logan's friend has double the number of points.

How many points do they have altogether?

Counting Starter

x	2	3	4	5	10
2					
3					
4					
5					
10					

x	10	3	5	2	4
5					
3					
2					
10					
4					

Derivation Board Example

Fact Family		Nearby
7 x 8 = 56	56 ÷ 7 = 8	$8 \times 8 = 64$
8 x 7 = 56	56 ÷ 8 = 7	$6 \times 8 = 48$
Equivalent	If I know	Place Value
7+7+7+7+7+7=56	7 × 8 = 56	7 x 80 = 560
8+8+8+8+8=56		70 x 8 = 560
$7 \times 4 + 7 \times 4 = 56$		70 x 80 = 5600
$7 \times 5 + 7 \times 3 = 56$	Array	700 x 8 = 5600
5 x 8 + 2 x 8 = 56		0.7 x 8 = 5.6
		56000 ÷ 7 = 800

Intelligent Practice

Complete a derivation board for the questions below:

$$9 \times 8 = 72$$

$$6 \times 7 = 42$$

$$96 \div 8 = 12$$
 $49 \div 7 = 7$

$$49 \div 7 = 7$$

Next Steps

Use a card to complete each calculation.

0.8 8 80 800 8000

Counting Starter

The missing factors are 2, 3, 4, 5 and 10.

Can you complete the grid?

x					
		20		100	
			12	30	
	10				
				50	15
			16		

Intelligent Practice

3 digit x 1 digit (no regrouping)

$$124 \times 2 =$$

$$402 \times 2 =$$

$$312 \times 3 =$$

$$320 \times 3 =$$

3-digit x 1 digit (with regrouping)

$$124 \times 3 =$$

$$142 \times 3 =$$

$$421 \times 3 =$$

$$465 \times 2 =$$

Next Steps

 $321 \times 3 = 963$

Without calculating, which is greater? 321 x 4 or 322 x 3?

Explain your answer.

Counting Starter

We have used 1, 10, 5 derive to fill in 1x, 10x and 5x for you.

How can you use these facts to help you complete the times table grid?

х	1	2	3	4	5	6	7	8	9	10	11	12
6	6				30					60		
7	7				35					70		
8	8				40					80		

How will you use your known facts to complete the following times table grid efficiently?

X	3	6	12	9	1	4	8	5	10	11	2	7
6												
7												
8												

Intelligent Practice

2 digit ÷ 1 (no remainder)

$$48 \div 3 =$$

$$51 \div 3 =$$

$$63 \div 3 =$$

I will share the tens/ones into groups of ____.

I have ___ groups of ____.

2 digit ÷ 1 (with remainder)

$$47 \div 3 =$$

$$50 \div 3 =$$

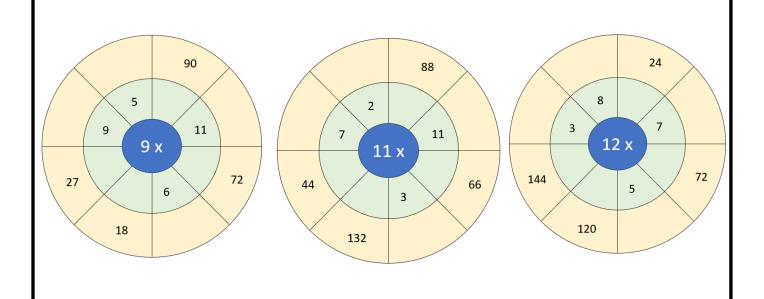
$$64 \div 3 =$$

I will share the tens/ ones into groups of _____.

I have ___ groups of ___ and __ remainder.

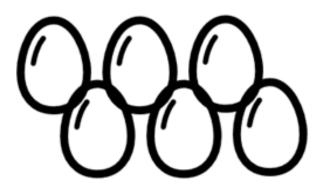
Next Steps

Write <, > or = to compare the calculations.


Can you make a prediction before calculating?

Counting Starter

We have used 1, 10, 5 derive to fill in 1x, 10x and 5x for you.


How can you use these facts to help you complete the times table grid?

х	1	2	3	4	5	6	7	8	9	10	11	12
9	9				45					90		
11	11				55					110		
12	12				60					120		

Intelligent Practice

A farmer has 157 eggs.

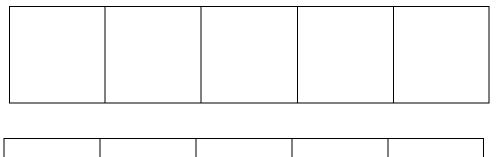
He stores them in trays. Each tray holds 6 eggs.

- 1. How many full trays of eggs can the farmer fill?
- 2. How many eggs will be left over?
- 3. How many trays will he need to hold **all** of the eggs?

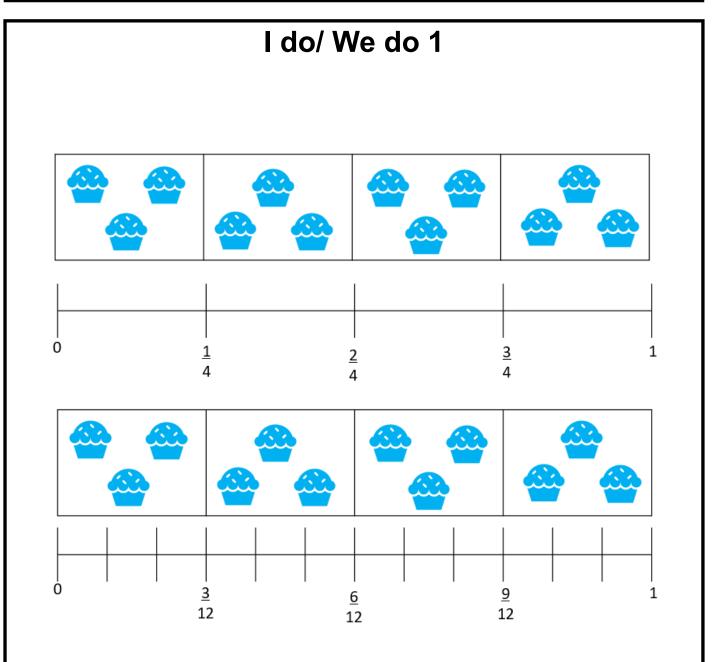
Next Steps

6 children can sit on one picnic bench.

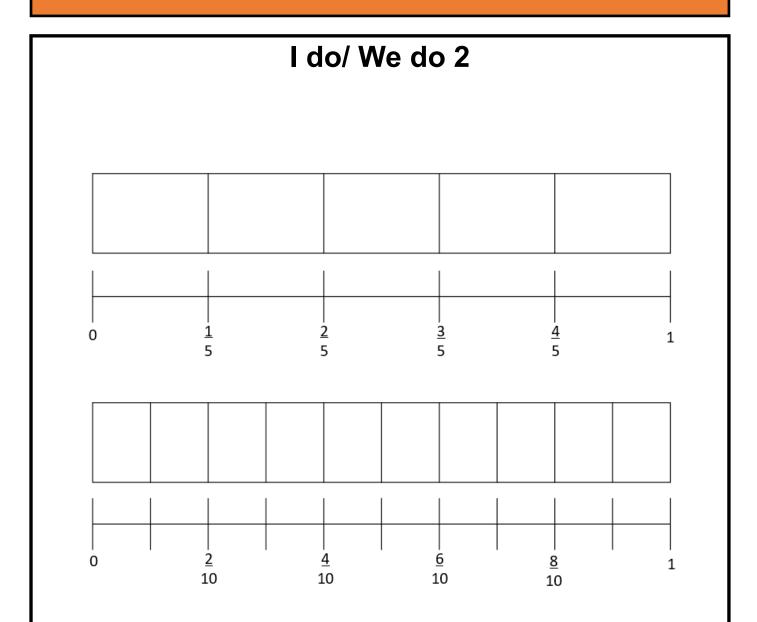
There are 134 children.


How many picnic benches are needed so each child can sit down?

Morgan has worked out the answer to the question as <u>22 picnic benches</u>.


Agree or disagree?

Counting Starter



1 whole = 1.0 = 100%						
<u>1</u> 5	<u>1</u> 5	<u>1</u> 5	<u>1</u> 5	<u>1</u> 5		
0.2	0.2	0.2	0.2	0.2		
20%	20%	20%	20%	20%		

The numerator has been multiplied by ____, so if the denominator is multiplied by ____, then the fractions will be equivalent.

Year 5
Fractions: Session 1

The numerator has been multiplied by ____, so if the denominator is multiplied by ____, then the fractions will be equivalent.

Year 5

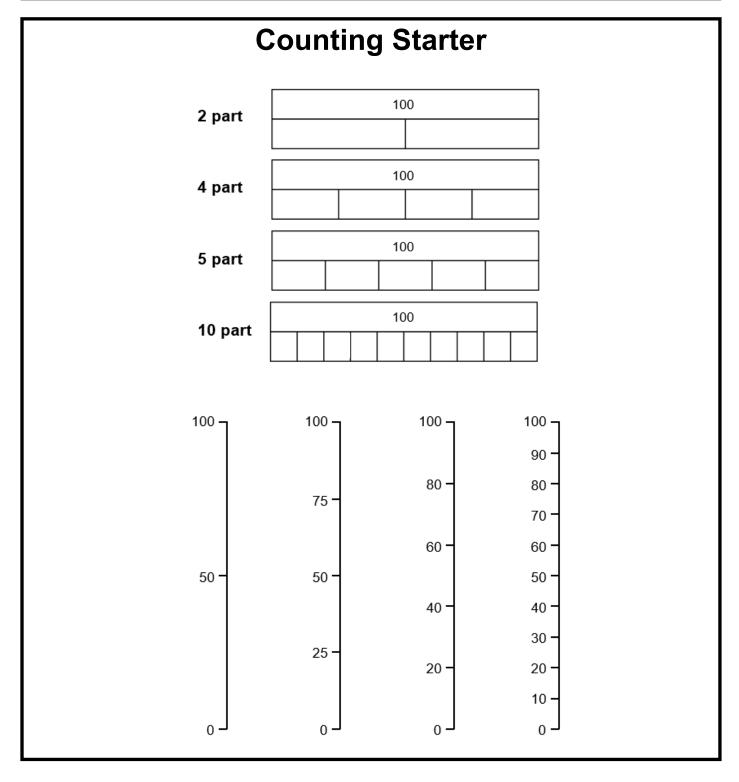
Fractions: Session 1

Intelligent Practice

Can you draw a bar model and/or a number line to prove that these fractions are equivalent?

$$\frac{1}{2} = \frac{4}{8} \qquad \frac{2}{3} = \frac{8}{12}$$

$$\frac{3}{4} = \frac{12}{16} \qquad \frac{3}{8} = \frac{6}{16}$$


The numerator has been multiplied by ____, so if the denominator is multiplied by ____, then the fractions will be equivalent.

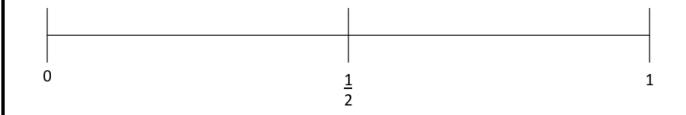
Next Steps

Write the two missing values to make these equivalent fractions correct.

$$\frac{\boxed{}}{5} = \frac{6}{10} = \frac{12}{\boxed{}}$$

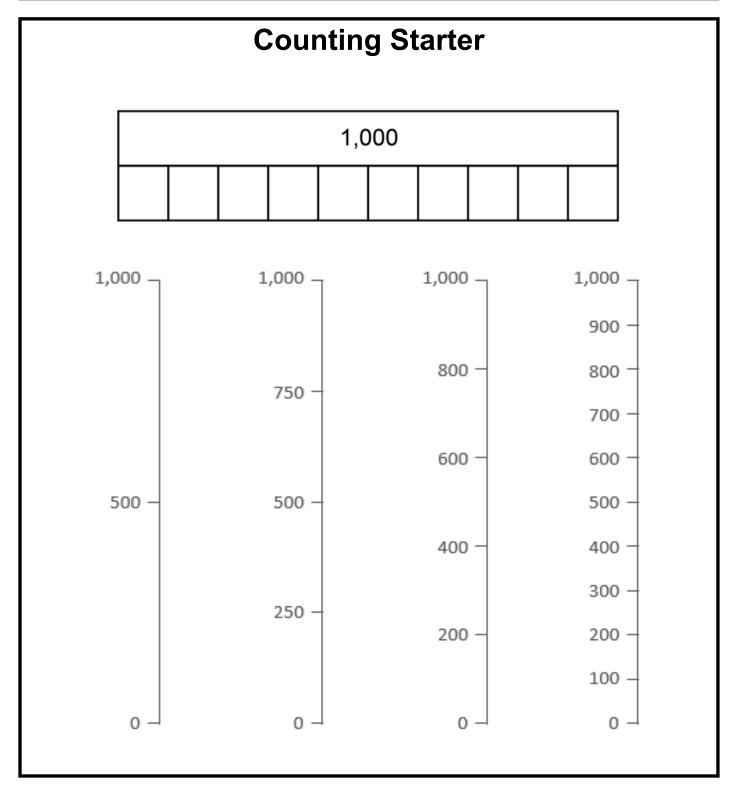
Year 5
Fractions: Session 2

Intelligent Practice


Put these fractions in **descending** order:

$$\frac{1}{3}$$
 $\frac{3}{2}$

$$\frac{5}{6}$$
 $\frac{6}{12}$


Challenge:

Can you place the fractions on this number line?

Next Steps				
Write two different fractions that are greater than $\frac{1}{2}$ but less than 1				

Year 5
Fractions: Session 3

Year 5

Fractions: Session 3

Intelligent Practice

Adding fractions

$$\frac{6}{8} + \frac{4}{8} =$$

$$\frac{3}{4} + \frac{3}{4} =$$

$$\frac{5}{7} + \frac{3}{7} =$$

$$\frac{5}{6} + \frac{4}{6} =$$

Subtracting fractions

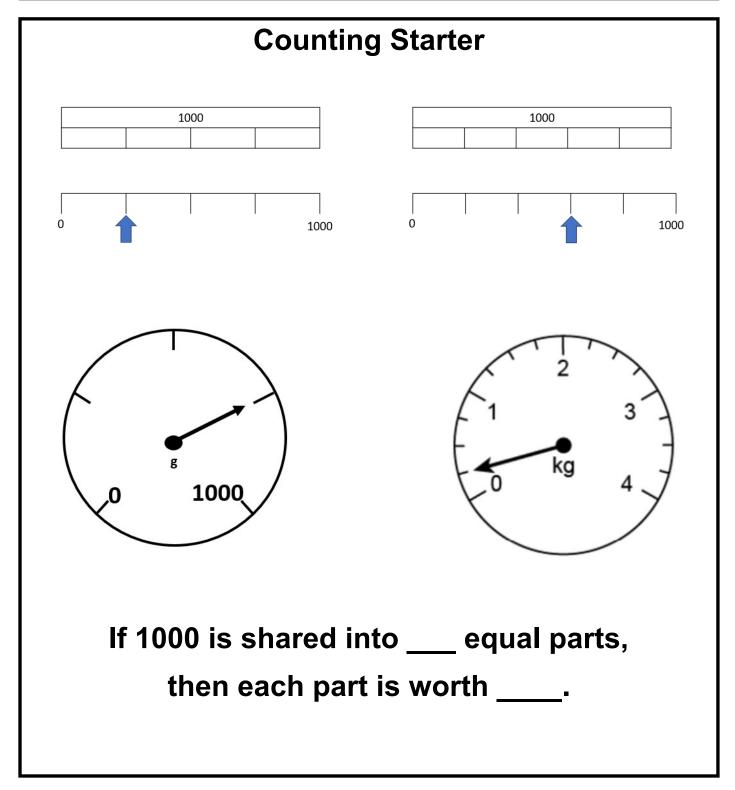
$$\frac{10}{8} - \frac{4}{8} =$$

$$\frac{5}{4} - \frac{2}{4} =$$

$$\frac{12}{7} - \frac{6}{7} =$$

$$\frac{7}{6} - \frac{5}{6} =$$

Next Steps


Reeves buys two cakes and cuts each one into 8 equal pieces.

Reeves eats
$$\frac{5}{8}$$
 and Greg eats $\frac{4}{8}$.

What fraction of the two cakes is left?

Year 5
Fractions: Session 4

Year 5

Fractions: Session 4

Intelligent Practice

Adding fractions

$$\frac{5}{8} + \frac{1}{4} =$$

$$\frac{2}{3} + \frac{2}{9} =$$

$$\frac{11}{30} + \frac{6}{10} =$$

$$\frac{3}{5} + \frac{5}{20} =$$

Subtracting fractions

$$\frac{7}{8} - \frac{1}{4} =$$

$$\frac{3}{4} - \frac{1}{2} =$$

$$\frac{24}{30} - \frac{6}{10} =$$

$$\frac{5}{6} - \frac{5}{12} =$$

The denominator has been multiplied by ____, so to make the equivalent fraction, multiply the numerator by ____.

When fractions have the same _____, to add/subtract them I just add/subtract the ____.

Next Steps

$$\frac{1}{4} + \frac{2}{[?]} = \frac{[?]}{20}$$