Using and interpreting test outcomes

You should use evidence from the English reading and mathematics tests to inform your teacher assessment judgement for each pupil. You can also use the optional KS1 English grammar, punctuation and spelling test to inform your teacher assessment judgement in English writing.

The tests can provide evidence that a pupil has met certain 'pupil can' statements, as well as evidence to support the judgement overall. Tests and teacher assessment are different forms of assessment, so it is not necessary for the outcomes to be the same.

The national curriculum tests are compensatory – as pupils can score marks from any parts of the tests, pupils with the same total score may achieve their marks in different ways. The teacher assessment frameworks are different and ask teachers to assess pupils against certain aspects of the national curriculum, based on a range of evidence from the classroom.

It is possible for a pupil to have met the expected standard in the test, but not for teacher assessment, because of gaps in their knowledge or understanding. It is also possible for pupils to have demonstrated their attainment of the 'pupil can' statements through their classwork, but not to have achieved the mark for a related question on the test. If a pupil gets a question wrong in the test on an area of the curriculum that they have demonstrated in their classwork, the teacher will want to take this into consideration when making their teacher assessment judgement.

Together, the tests and teacher assessment provide a broader picture of pupil attainment.

<u>Understanding scaled scores at key stage 1 - GOV.UK (www.gov.uk)</u>

Based on the 2023 KS1 arithmetic and reasoning tests – which became widely available on 3rd June 2023, the following gives some suggestions of pupil's responses to test questions that might add to the evidence base for teachers and to support moderation:

Standard – "Working towards expected" (WTS)	Arithmetic paper	Reasoning paper
read and write numbers in numerals up to		2,6
100		
partition a two-digit number into tens and		2, 17
ones to demonstrate an understanding of		
place value, though they may use		
structured resources* to support them		
(*For example, base 10 apparatus.)		
add and subtract two-digit numbers and	2, 6, 8, 9, 17	17
ones, and two-digit numbers and tens,		
where no regrouping is required,		
explaining their method verbally, in		
pictures or using apparatus (e.g. 23 + 5; 46		
+ 20; 16 – 5; 88 – 30)		
recall at least four of the six number		
bonds for 10 and reason about associated		
facts (e.g. 6 + 4 = 10, therefore 4 + 6 = 10		
and 10 – 6 = 4)		
count in twos, fives and tens from 0 and		
use this to solve problems		
know the value of different coins		3, 23
name some common 2-D and 3-D shapes		8,9
from a group of shapes or from pictures of		
the shapes and describe some of their		
properties (e.g. triangles, rectangles,		
squares, circles, cuboids, cubes, pyramids		
and spheres).		

Standard – "Working at expected" (EXS)	Arithmetic paper	Reasoning paper
read scales* in divisions of ones, twos,		12
fives and tens		
partition any two-digit number into		
different combinations of tens and ones,		
explaining their thinking verbally, in		
pictures or using apparatus		
add and subtract any 2 two-digit numbers	3, 6, 8, 9, 10, 14, 16, 17, 18, 20,	4, 13, 18, 23, 27, 29
using an efficient strategy, explaining their	23, 24, 25	
method verbally, in pictures or using		
apparatus (e.g. 48 + 35; 72 – 17)		
recall all number bonds to and within 10	1, 19	1, 14, 19, 25, 26, 31
and use these to reason with and		
calculate bonds to and within 20,		
recognising other associated additive		
relationships (e.g. If 7 + 3 = 10 then 17 + 3		
= 20; if 7 – 3 = 4 then 17 – 3 = 14; leading		
to if 14 + 3 = 17, then 3 + 14 = 17, 17 – 14		
= 3 and 17 – 3 = 14)		
recall multiplication and division facts for	4, 7, 11, 12, 13,	5, 16, 19, 25, 26, 27
2, 5 and 10 and use them to solve simple		
problems, demonstrating an		
understanding of commutativity as		
necessary		

identify —1/4 , 1/3 , 1/2 , 2/4 , 3/4 , of a	15, 21, 22	22, 24
number or shape, and know that all parts		
must be equal parts of the whole		
use different coins to make the same		
amount		
read the time on a clock to the nearest 15		
minutes		
name and describe properties of 2-D and		8, 9
3-D shapes, including number of sides,		
vertices, edges, faces and lines of		
symmetry.		

Standard – "Greater depth" (GDS)	Arithmetic paper	Reasoning paper
read scales* where not all numbers on the		
scale are given and estimate points in		
between		
(*The scale can be in the form of a number line or a		
practical measuring situation.)		
recall and use multiplication and division	4, 7, 11, 12, 13	
facts for 2, 5 and 10 and make deductions		
outside known multiplication facts		
use reasoning about numbers and		25, 30, 32
relationships to solve more complex		
problems and explain their thinking (e.g.		
29 + 17 = 15 + 4 + " ; 'together Jack and		
Sam have £14. Jack has £2 more than		
Sam. How much money does Sam have?'		
etc)		
solve unfamiliar word problems that		23, 26, 27, 29
involve more than one step (e.g. 'which		
has the most biscuits, 4 packets of biscuits		
with 5 in each packet or 3 packets of		
biscuits with 10 in each packet?')		
read the time on a clock to the nearest 5		
minutes		
describe similarities and differences of 2-D		
and 3-D shapes, using their properties		
(e.g. that two different 2-D shapes both		
have only one line of symmetry; that a		
cube and a cuboid have the same number		
of edges, faces and vertices, but different		
dimensions)		