Services

Example Problem Pairs I, We, You

Access and Success for All

Jo Lees
Jo.lees@hants.gov.uk

Learning Episodes and Paired Examples

Access and Success for All

Developing the work of Craig Barton in his book:
'Reflect, Expect, Check, Explain'

Learning Episode ~ A basic model

Worked

 Example
Practice

Problem solving

Worked example : The teacher models how to carry out a method

Practice: Pupils work through questions that require that method, gaining confidence and competence

Problem solving: With the basics secure, pupils are challenged to do something more complex involving that method. Perhaps use it in a non-standard way, in a context, in a SATs question, or interleaved with other mathematical concepts

```
Worked Example
Yent Teacher
```

When modelling an example, it is important to show the underlying mathematical structure by using visual models and more formal calculations side by side

Model
Calculations

I do, we do, you do

Worked Example \quad ilent Teacher

Question: Find $\frac{5}{7}$ of 161

I DO, WE DO, YOU DO

I DO, WE DO, YOU DO

Worked Example -- Silent Teacher -- Problem Pair

I DO, WE DO, YOU DO

Find $\frac{5}{7}$ of 182

Calculations

$$
182 \div 7=26
$$

$$
26 \times 5=130
$$

$$
\frac{5}{7} \text { of } 182=130
$$

I DO, WE DO, YOU DO

Over to you:
Create a pair of examples for your class on something you are currently teaching.

Worked example	Thinking	Your turn

Model	Calculations						
			-				
			-	-			
			-				

Learning Episode ~ A basic model

Worked

 Example
Practice

Problem solving

Worked example : The teacher models how to carry out a method
Practice: Pupils work through questions that require that method, gaining confidence and competence

Problem solving: With the basics secure, pupils are challenged to do something more complex involving that method. Perhaps use it in a non-standard way, in a context, in a SATs question, or interleaved with other mathematical concepts

```
Practice \longrightarrowntelligent Practice
```

Intelligent practice sequences are sequences of questions which enable pupils to gain practice in carrying out a mathematical method, whilst at the same time providing opportunities to think mathematically

The three elements needed to support mathematical thinking

- The role of the task
- The role of the pupil
- The role of the teacher

The actions that support students to think and behave mathematically:
\checkmark Modelling
To behave mathematically:
\checkmark Reflect
\checkmark Planned questions
\checkmark Scaffolding for access
\checkmark Challenging for depth
\checkmark Providing the time to think
\checkmark Encouraging and finding the right words to say to the right students at the right time

The role of the task

A poorly designed task makes it very hard for mathematical thinking to occur.

Careful sequencing gets pupils part of the way to mathematical thinking
Such sequences provide a catalyst for curiosity and a platform to ask why ?

Task :
Calculate $\frac{5}{7}$ of 175 using the method we have just learned (you can use a bar model to help you)

$$
\begin{aligned}
& 175 \div 7=25 \\
& 25 \times 5=125 \\
& \frac{5}{7} \text { of } 175=125
\end{aligned}
$$

When you have finished, compare with a partner to check your answer

REFLECT

$\frac{5}{7}$ of $175=125$
 $\frac{5}{7}$ of $350=$

Without telling anyone, think about what has changed and what has stayed the same

Describe to the person next to you your reflection and listen to theirs. Are they the same?

Given that you know the answer to the first question is 125 , can you now form an expectation about the answer to the second question?

Share your expectation and make sure you describe your reasons

CHECK

$\frac{5}{7}$ of $175=125$
 $\frac{5}{7}$ of $350=2$

Work out the answer to the second question, using the method we have just learned (including a bar model if you wish), show all your working. Share your answer.

$\frac{5}{7}$ of $175=125$ $\frac{5}{7}$ of $350=250$

Look at Q1 with its answer of 125 Look at Q2 with its answer of 250
If this second answer surprises you, can you explain why ?
If this answer does not surprise you, can you think of a way of explaining the relationship that would help someone who doesn't understand it yet?

REFLECT, EXPECT, CHECK, EXPLAIN

Now work through these other examples
How does the process of 'reflect, expect, check, explain' enhance your mathematical thinking alongside your practice of the method

$$
\begin{aligned}
& \frac{5}{7} \text { of } 175=125 \\
& \frac{5}{7} \text { of } 350=250 \\
& \frac{5}{7} \text { of } 700= \\
& \frac{5}{7} \text { of } 70= \\
& \frac{5}{7} \text { of } 35= \\
& \frac{5}{7} \text { of } 17.5=
\end{aligned}
$$

REFLECT, EXPECT, CHECK, EXPLAIN

Intelligent Practice and Task Design

$$
\begin{array}{ll}
\frac{3}{7} \text { of } 175=75 & \frac{5}{7} \text { of } 175=125 \\
\frac{3}{7} \text { of } 350=150 & \frac{5}{7} \text { of } 350=250 \\
\frac{3}{7} \text { of } 700=300 & \frac{5}{14} \text { of } 175=62.5 \\
\frac{3}{7} \text { of } 70= & \frac{5}{14} \text { of } 350=125 \\
\frac{3}{7} \text { of } 35= & \frac{5}{7} \text { of } 35= \\
\frac{3}{7} \text { of } 17.5=7.5 & \frac{5}{14} \text { of } 17.5=6.25
\end{array}
$$

Over to you:
After completing a sequence of Intelligent Practice questions, consider the following prompts

Prompts

- Choose two things you like
- Choose two things you would change
- Choose a relationship between answers to explain in two ways
- Think of two questions to continue the sequence

Learning Episode ~ A basic model

Worked Example

Practice

Problem solving

Worked example : The teacher models how to carry out a method
Practice: Pupils work through questions that require that method, gaining confidence and competence

Problem solving: With the basics secure, pupils are challenged to do something more complex involving that method. Perhaps use it in a non-standard way, in a context, in a SATs question, or interleaved with other mathematical concepts

What is the purpose of Problem Solving ?

To allow pupils to apply the method they have practiced earlier in the Learning Episode in novel ways

Mathematical problems are the unfamiliar, complex and interesting challenges that occur naturally in mathematics.

Which experiences do pupils need in order to develop into creative, resilient problem solvers?

Key Ingredients of Problem Solving

things we want pupils to experience at the end of each Learning Episode

1. Same Surface, Different Depth type problems
2. Goal-Free problems
3. Purposeful Practice
4. Same Surface, Different Depth type problems (using I See Reasoning)

5. Goal-Free problem using a KS2 SATs question

> This picture shows the masses of eight kittens at 4 weeks old
> They should each have a mass of 490 g at 6 weeks old What can you work out?

(adapted from P3, Q7, 2019)
3. Purposeful Practice

- thinking hard
- getting out of the comfort zone

If I know that $\frac{3}{7}$ of a number is 42 , what is the number ?
If $\frac{3}{7}$ of a number is greater than 47 , what is the smallest possible value for this number?

If $\frac{3}{7}$ of a number is less than 47 , what is the largest possible value for this number ?

If $\frac{3}{7}$ of a number is the same as $\frac{5}{7}$ of 84 , what is the number?

The Learning Episode

Worked Example

Practice

Problem solving

How would this work in your classroom / school?

What are the barriers to success when implementing this?

What will your colleagues like / do well ?

What will you need to support / provide CPD for ?

HIAS MATHS TEAM

Jo.Lees@hants.gov.uk

For further details on the full range of services available please contact us using the following email:
htlcdev@hants.gov.uk

Upcoming courses

Keep up-to-date with our learning opportunities for each subject through our Upcoming Course pages linked below. To browse the full catalogue of learning offers, visit our new Learning Zone. Full details of how to access the site to make a booking are provided here.

- English
- Maths
- Science
- Geography
- RE
- History
- Leadership
- Computing
- Art
- D\&T
- Assessment
- Support Staff
- SEN

