Secondary Puzzle Page - Solutions

Same Surface, Different Depth Problems

These linked problems are taken from Craig Barton's excellent website:
https://ssddproblems.com/the-cubic-equation/

The Cubic Equation with solutions

Show that the equation $x^{3}-7 x+5=0$ has a solution between $x=2$ and $x=3$	$\begin{aligned} & f(x)=x^{3}-7 x+5 \\ & g(x)=x-1 \end{aligned}$
$f(2)=-1$	Find $\mathrm{fg}(\mathrm{x})$
$f(3)=11$	
Change in sign and function is continuous, therefore, root must be in interval $[2,3]$	$f g(x)=x^{3}-3 x^{2}-4 x+11$
Let $\mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}{ }^{3}-7 \mathrm{x}_{\mathrm{n}}+5$ Given that $x_{0}=2$, find x_{3} to 3 significant figures	Find the remainder when $x^{3}-7 x+5$ is divided by (x-5) [Further Maths GCSE]
$\mathrm{x}_{0}=2$	95
$\mathrm{x}_{1}=-1$	
$\mathrm{x}_{2}=11$	
$x_{3}=1259$	
$x_{3}=1260$ (to 3 sig figs)	

