integer

$-15,7,43$

are all integers

Integer Number Line

Zero is neither positive not negative

$0.5,-6.2,81.9$ are not integers

divisor

$18 \div 3=6$
 3 is the divisor.

Hampshire Services
Services
HIAS SCHOOL IMPROVEMENT

18 divided between three
The number of groups is the divisor

$18 \div 3=6$
 18 is the dividend

dividend

18 divided between three
The original amount to be divided is the dividend
$18 \div 3=6$
18 is the dividend
$18 \div 3=6$
3 is the divisor.

quotient

$18 \div 3=6$
 6 is the quotient

18		
6	6	6

18 divided between three gives six in each group The size of the group is the quotient (The 'answer' to a division calculation)
$18 \div 3=6$
18 is the dividend

lowest common multiple (LCM)

The LCM of $\mathbf{2 4}$ and $\mathbf{3 6}$ is 72

The HCF of 24 and 36 is 12 (highest common factor)

highest common factor

 (HCF)
The HCF of 24 and 36 is 12

\qquad

> Prime Factor Form $24=2 \times 2 \times 2 \times 3$ $36=2 \times 2 \times 3 \times 3$

The LCM of $\mathbf{2 4}$ and $\mathbf{3 6}$ is $\mathbf{7 2}$ (lowest common multiple)

square root

$3 \times 3=3^{2}$
$3 \times 3=9$
$\sqrt{3^{2}}=3$

$$
\begin{gathered}
\sqrt{9}=+/-3 \\
\begin{array}{c}
\left\{\begin{array}{c}
3 \times 3 \\
\{-3 \times-3 \\
-3 \times 9
\end{array}\right\}
\end{array}
\end{gathered}
$$

cube root

Hampshire

$$
\begin{aligned}
& 3 \sqrt{8}=2 \\
& \{2 \times 2 \times 2=8\}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \times 2 \times 2=2^{3} \\
& 2 \times 2 \times 2=8 \\
& \sqrt[3]{8}=2
\end{aligned}
$$

$$
\sqrt{9}=+/-3
$$

$$
\left\{\begin{array}{c}
3 \times 3=9 \\
-3 \times-3=9
\end{array}\right\}
$$

product rule (for counting)

The number of different ways 3 hats can be distributed amongst 3 people is $3 \times 2 \times 1=6$

Person 1 has three choices (YGB)
Person 2 then has two choices (GB) Person 2 than has one choice (B)

The probability of selecting yellow, then green, then blue is $\frac{1}{6}$

index (indices)

$14^{3}=14 \times 14 \times 14=2744$

14 is the base
3 is the index (or power)

Hampshire

$x^{1}=14$				
x^{4}	x^{3}	x^{2}	x^{1}	x^{0}
38416	2744	196	14	1

$14 \times 3=42$

A surd is not a whole number . It's decimal equivalent is a non-repeating, non-terminating decimal. You cannot place it accurately on a number-line.

Services \qquad

rationalise
 (denominator)

$$
\frac{2}{\sqrt{3}}=\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}
$$

3 is a rational number \sim you can place it on a number-line

$$
\begin{array}{r}
\frac{a}{\sqrt{\mathrm{~b}}}=\frac{a}{\sqrt{\mathrm{~b}}} \times \frac{\sqrt{\mathrm{b}}}{\sqrt{\mathrm{~b}}}=\frac{a \sqrt{\mathrm{~b}}}{\mathrm{~b}} \\
\frac{\sqrt{\mathrm{~b}}}{\sqrt{\mathrm{~b}}}=1
\end{array}
$$

$$
\frac{2}{\sqrt{3}}
$$

This fraction has an irrational (surd) denominator A surd is not a whole number . It's decimal equivalent is a non-repeating, non-terminating decimal. You cannot place it accurately on a number-line

standard (index) form

3.754×10^{5}

Hampshire

Numbers in standard form have two parts
A number from 1 to $10, \times$ A power of not including 10

Standard index form	Ordinary form
1×10^{3}	1000
1×10^{2}	100
1×10^{1}	10
1×10^{0}	1
1×10^{-1}	0.1
1×10^{-2}	0.01
1×10^{-3}	0.001

375400

upper bound

The length of a book is 27.3 cm to one decimal place What is the longest length the book could be ?

The length of a book is 27.3 cm to one decimal place What is the upper bound of the book length?

The upper bound is +0.05 cm
$27.25 \leq$ book length <27.35
The upper bound is 27.35 cm Services Services HIAS SCHOOL IMPROVEMENT \qquad
\qquad

The lower bound is -0.05 cm
27.25 s book length < 27.35

The lower bound is 27.25 cm

lower bound

The length of a book is 27.3 cm to one decimal place What is the longest length the book could be ?

The length of a book is 27.3 cm to one decimal place What is the lower bound of the book length?

The lower bound is -0.05 cm
$27.25 \leq$ book length < 27.35
The lower bound is 27.25 cm

Hampshire
 Services
 HIAS SCHOOL IMPROVEMENT

The upper bound is +0.05 cm
27.25 < book length < 27.35

The upper bound is 27.35 cm

substitute

x	x	x	x	x	x	x	-10
12	12	12	12	12	12	12	-10

74					

Find x when $7 x-10=74$
Solve for x

$$
7 x=84 \quad(\div 7)
$$

$$
x=12
$$

inequality

$73 \leq t<81$

expand

$$
(x+3)(x-5)=x^{2}-2 x-15
$$

(brackets)

Hampshire \qquad HIAS SCHOOL IMPROVEMENT
$\mathrm{F}=$ first pair
$\mathrm{O}=$ outer pair
I = inner pair
L = last pair

factorise

$$
x^{2}-2 x-15=(x+3)(x-5)
$$

$$
\begin{aligned}
& \text { Factor pairs to }-15 \\
& -15=+3 \times-5 \\
& -15=-3 x+5 \\
& -15=-1 \times+15 \\
& -15=+1 \times-15
\end{aligned}
$$

Hampshire

```
Which pair also sum to -2
For the x-term?
-2 = +3-5
```

$10 \times 4=3 \times 4+7 \times 4$

quadratic

(function)

$y=3 x^{2}+5 x-6$

In general, quadratic functions are of the form

$$
y=a x^{2}+b x-c
$$

\qquad HIAS SCHOOL MPROVEMENT

$$
\begin{aligned}
& y=x^{2} \\
& y=a x^{2}+b x-c \\
& (a=1 ; b=0 ; c=0)
\end{aligned}
$$

$n^{\text {th }}$ term

$15,18,21,24,27 \ldots$
The nth term of this sequence is $3 n+12$
$\mathrm{U}_{\mathrm{n}}=3 \mathrm{n}+12$
$\mathrm{n}=1, \mathrm{U}_{1}=3(1)+12=15$
$\mathrm{n}=2, \quad \mathrm{U}_{2}=3(2)+12=18$
$\mathrm{n}=3, \mathrm{U}_{3}=3(3)+12=21$
Hampshire

$$
U_{n}=3 n+12
$$

algebraic fraction

$$
y=\frac{x^{2}}{x+3} \text { for } x>-3
$$

This graph has an asymptote at $x=-3$

identity ($\overline{\text { (}}$)

$$
a^{2}-b^{2} \equiv(a+b)(a-b)
$$

$$
(a-b)(a+b)=a^{2}+a b-a b-b^{2}
$$

Hampshire

function

$$
f(x)=3 x-12
$$

$$
f(x)=3 x-12
$$

$3 x-12$

inverse function

$$
f^{-1}(x)
$$

$$
\begin{array}{r}
f(x)=3 x-12 \\
f^{-1}(x)=\frac{x+12}{3}
\end{array}
$$

Hampshire

$$
3 x-12
$$

composite function

$$
\begin{aligned}
& f(x)=x+4 \\
& g(x)=x^{2} \\
& g f(x)=(x+4)^{2}
\end{aligned}
$$

turning point

$$
y=x^{2}-6 x+4
$$

Complete the square

$$
y=(x-3)^{2}-5
$$

turning point is at $(3,-5)$

HIAS SCHOOL IMPROVEMENT

Turning point at $(3,-5)$
\qquad
\qquad

This linear graph has no turning point

iteration

Use the iterative formula $x_{n+1}=1+\frac{11}{x_{n}-3}$ and the starting value $x_{1}=-2$ to find a value for x_{4}

$$
\begin{array}{ll}
x_{2}=1+\frac{11}{-2-3} & x_{2}=-1.2 \\
x_{3}=1+\frac{11}{-1.2-3} & x_{3}=-1.619 \\
x_{4}=1+\frac{11}{-1.619-3} & x_{4}=-1.381
\end{array}
$$

Hampshire Services HIAS SCHOOL IMPROVEMENT

Substitute $x=-2$ into the equation
$y=1+\frac{11}{x-3}$ to find the value of y

$$
y=1+\frac{11}{-2-3}
$$

$$
y=-1.2
$$

This is an enlargement with a scale factor of -2

Hampshire Services HIAS SCHOOL IMPROVEMENT

Scale factor 2 \qquad corresponding edges are twice as long

This is a translation.

reduce

(to simplest form)

10	10	10	10	10	10	10
2	5					

A watch is bought at a car boot sale for $£ 50$. It is later sold in a shop for $£ 25$. What is the percentage loss?

percentage

(decrease)

The watch has decreased by £25
The percentage decrease is
(difference / original) $\times 100=25 / 50 \times 100=50 \%$
A 50\% loss has been made.

original cost	
sold price	loss (difference)

The percentage decrease is (difference \div original) $\times 100$

Non-Example
A watch is bought at a car boot sale for $£ 40$. It is later sold in a shop for $£ 50$. What is the percentage profit?

The watch has increased by $£ 10$
The percentage increase is
(difference / original) $\times 100=10 / 40 \times 100=25 \%$
25% profit has been made.

A watch is bought at a car boot sale for $£ 40$. It is later sold in a shop for $£ 50$. What is the percentage profit?

percentage

(increase)

The watch has increased by $£ 10$
The percentage increase is
(difference $/$ original) $\times 100=10 / 40 \times 100=25 \%$ 25% profit has been made.

sold price	
original cost	difference

The percentage increase is (difference \div original) $\times 100$

A watch is bought at a car boot sale for $£ 50$. It is later sold in a shop for $£ 25$. What is the percentage loss?

The watch has decreased by $£ 25$
The percentage decrease is
(difference / original) $\times 100=25 / 50 \times 100=50 \%$ A 50% loss has been made.

compound (units)

Calculate the density of aluminium if $20 \mathrm{~cm}^{3}$ has a mass of 54 g .

Density $=$ mass \div volume

$$
=54 \div 20
$$

$=2.7 \mathrm{~g} / \mathrm{cm}^{3}$ (grams per cubic centimetre)
Density is measured using compound units

The mass of one apple is 10 grams
Calculate the mass of 5 apples
$10 \mathrm{~g} \times 5=50 \mathrm{~g}$
y is directly proportional to x
when $x=3, y=15$

directly proportional

write an equation for y in terms of x

This graph shows direct proportion

Hampshire Services HIAS SCHOOL IMPROVEMENT $\geq, v=5 x$

This graph shows inverse proportion

y is inversely proportional to x

$$
\text { when } x=5, y=1
$$

inversely proportional

write an equation for y in terms of x

Picture, model, or diagram

Hampshire Services HIAS SCHOOL IMPROVEMENT

This graph shows inverse proportion

trigonometric ratio

$$
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

(trigonometry)

Example

exponential growth

A population of rabbits doubles every month.

The population is growing exponentially.

Month	Number of rabbits
1	$2=2^{1}$
2	$4=2^{2}$
3	$8=2^{3}$
4	$16=2^{4}$
5	$32=2^{5}$
6	$64=2^{6}$
n	2^{n}

Hampshire Services HIAS SCHOOL IMPROVEMENT \qquad Non-Example

Example

exponential decay

Picture, model, or diagram

Year	Grams of salt
1	2500000
2	1250000
3	625000
4	312500
5	156250
6	78125
7	39063
8	19531
9	9766
10	4883
11	2441
12	1221
13	610
14	305
15	153

Hampshire
Services
HIAS SCHOOL IMPROVEMENT

trapezium (-a)

Hampshire
Services
HIAS SCHOOL IMPROVEMENT

Pythagoras' Theorem

$$
\begin{aligned}
& 3^{2}+4^{2}=5^{2} \\
& 9+16=25
\end{aligned}
$$

Hampshire

$$
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

perpendicular bisector

$A B=8 \mathrm{~cm}$
$C D$ bisects $A B$ at 90°

Use a pair of compasses.
Place the point on A and open the compasses to over half way Make an arc above and below the line. Repeat from B
Join the arcs

congruent

$\underset{\text { Services }}{\text { Hampshire }}$
Services
HIAS SCHOOL IMPROVEMENT

These triangles are congruent
All corresponding angles are the same size All corresponding sides are the same length

similar

Hampshire
Services
HIAS SCHOOL IMPROVEMENT

These triangles are similar
All corresponding angles are the same
All corresponding sides are proportional

rotation

This is a rotation of 90° clockwise about the point $(-2,2)$

sector

Calculate the area of this sector to 1 decimal place

Sector area is $\frac{60}{360}$ of the circle area
Sector area $=\frac{1}{6} \times \pi \times 4 \times 4$
Sector area $\approx 8.4 \mathrm{~cm}^{2}$

Hampshire Services HAS SCHOOL IMPROVEMENT

A circle has a radius of length 3 cm
The area of a major segment is twice the area of the minor segment.
What is the area of the minor segment?

segment

```
Area of circle = \pir r
Area = 9\pi cm
Area minor:Area major
    1:2
        3:6
Area of minor segment = 3\pi cm
```

\qquad HIAS SCHOOL IMPROVEMENT

arc

Arc length is 0.25 of the circumference
Arc length $=0.25 \times \pi \times 8$
Arc length $\approx 6.28 \mathrm{~cm}$

$\underset{\text { Services }}{\text { Hamphire }}$ Services

 HIAS SCHOOL IMPROVEMENT

chord

All these lines are chords
DG and AC are also diameters

The diameter is the longest possible chord in a circle

bearing

The bearing of the lighthouse from the ship is 250°
8. ${ }_{\text {Services }}^{H a m p s h i r e ~}$ Services
HIAS SCHOOL IMPROVEMENT \qquad

These ships are 15 nautical miles apart

vector

A vector has magnitude and direction

Hampshire Services HIAS SCHOOL IMPROVEMENT

A length has magnitude but no direction

relative frequency

Picture, model, or diagram

100%			
35%	15%	25%	25%

The relative frequency shows the proportion of the total for each event occurring. It can represented as a fraction, a decimal or a percentage.

In a probability experiment, coloured counters were taken from a bag without looking and then replaced

Colour	Frequency	Relative Frequency
Purple	7	0.35
Blue	3	0.15
Pink	5	0.25
Orange	5	0.25
Total	20	1.00

The relative frequency of the event 'select blue' is 0.15

Hampshire Services

 HIAS SCHOOL IMPROVEMENTIn a probability experiment, coloured counters were taken from a bag without looking and then replaced. This was repeated twenty times.

Colour	Frequency
Purple	7
Blue	3
Pink	5
Orange	5
Total	20

'Blue' was selected three times

Roll a fair 1-6 die

' 6 ' is one possible outcome
\qquad

random

A discrete random variable:

(variable)

A continuous random variable:
The number of seconds taken to complete a race

Hampshire \qquad Services

The number of marbles in a jar HIAS SCHOOL IMPROVEMENT

A variable that can take on different values

No of marbles

Marble Jar	Number of marbles
A	126
B	232
C	145
D	108
E	175
F	73

A sample of exactly 10 marbles from each jar

fair

Picture, model, or diagram

Hampshire

Services
HIAS SCHOOL IMPROVEMENT

This spinner is fair. There is a equal chance of 'blue' and 'red'.
\qquad Non-Example

This spinner is unfair.
There is a greater chance of 'blue' than 'red' or 'yellow'

probability scale (0-1)

Event: Toss a coin
The probability of getting a 'head' is 0.5
The probability of getting a 'tail' is 0.5

The probabilty of getting a 'tail is 0.5

Venn diagram

In a year group of 142 students:
23 study only maths
18 study only physics
60 study physics
45 study only chemistry
32 study physics and chemistry only
8 study none of these subjects
7 study all three subjects

How many study mathematics and chemistry only?
Step one: Fill all the information into the diagram
Step two: Subtract the number of students accounted for from 142
Solution: 6 students studied maths and chemistry only

- $\underset{\text { Services }}{\text { Hamphire }}$ Services HIAS SCHOOL IMPROVEMENT

\qquad

Subject	No of students
Maths	39
Physics	60
Chemistry	90

This table shows the number of students studying each subject

+	1	2	2	5
1				
2				
2				
5				

sample space

+	1	2	2	5
1	2	3	3	6
2	3	4	4	7
2	3	4	4	7
5	6	8	7	10

$P($ more than 4$)=\frac{7}{16}$

Colour	Frequency
Purple	7
Blue	3
Pink	5
Orange	5
Total	20

exhaustive set

If a coin in tossed, there are two possible outcomes Heads or Tails

The probability of getting a head or a tail is 100\%
'Heads and Tails' are an exhaustive set

An exhaustive set contains all possible outcomes
\qquad HIAS SCHOOL IMPROVEMENT
Event: Roll a fair 1-6 die

$\mathbf{1 0 0 \%}$					
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$

Event: Toss a coin
Event: Toss a coin

$\mathbf{1 0 0 \%}$	
\mathbf{H}	

If a fair six-sided (1-6) die is rolled ten times and the outcomes are:
$6,6,4,4,3,4,3,5,6,2$

The set of actual outcomes is not exhaustive, since 1 has not appeared

empirical

The theoretical probability of rolling a 6 on a fair $1-6$-sided die is $\frac{1}{6}$
We can carry out a number of trials to gather empirical data to test this.

Services \qquad
 Non-Example

The theoretical probability of rolling a 6 on a fair $1-6$-sided die is $\frac{1}{6}$ We can use this theoretical probability to work out the probability of rolling a 4

A probability experiment collects empirical data

theoretical

(probability)

Result	number of each outcome number of possible outcomes
$\mathbf{1}$	$\frac{1}{6}$
$\mathbf{2}$	$\frac{1}{6}$
$\mathbf{3}$	$\frac{1}{6}$
$\mathbf{4}$	$\frac{1}{6}$
$\mathbf{5}$	$\frac{1}{6}$
$\mathbf{6}$	$\frac{1}{6}$

$$
P(4)=\frac{1}{6}
$$

Picture, model, or diagram

Hampshire Services HIAS SCHOOL IMPROVEMENT

Non-Example
Event: Roll a fair 1-6 die

Result	Frequency
1	45
2	42
3	39
4	47
5	38
6	44

A probability experiment collects empirical data

independent

Landing on heads after tossing a coin AND
rolling a 5 on a single 6 -sided die are examples of independent events.
\qquad

A card is chosen at random from a standard deck of 52 playing cards. Without replacing it, a second card is chosen.

What is the probability that the first card chosen is a queen and the second card chosen is a jack?
$P($ Queen $)=4 / 52 ; P($ Jack $)=4 / 51$
$P($ Queen and a Jack) $=4 / 52 \times 4 / 51=16 / 2652$
$P($ Queen and a Jack) $=4 / 663$
The probability of the Jack is dependent on the probability of the Queen.

The probability of Event 2 is independent of Event 1

A card is chosen at random from a standard deck of 52 playing cards. Without replacing it, a second card is chosen.

What is the probability that the first card chosen is a queen and the second card chosen is a jack?
$P($ Queen $)=4 / 52 ; P($ Jack $)=4 / 51$
$P($ Queen and a Jack) $=4 / 52 \times 4 / 51=16 / 2652$
$P($ Queen and a Jack) $=4 / 663$
The probability of the Jack is dependent on the probability of the Queen.
\qquad

Event 1: Draw a card, do not replace
Event 2: Draw a card

The probability of drawing a Jack second is dependent on whether or not a Queen was drawn first

conditional

	Have pets	Do not have pets	Total
Male	0.41	0.08	0.49
Female	0.45	0.06	0.51
Total	0.86	0.14	1

What is the (conditional) probability that a randomly selected person is male, given that they have a pet?
$P($ male and have a pet $)=0.41$
P (have a pet) $=0.86$
$\mathrm{P}($ male \mid have a pet $)=0.41 / 0.86=0.477$

- Hampshire

 P (have a pet)

Event	H	T
H	HH	HT
T	TH	TT

There are four possible outcomes when a fair coin is tossed twice

Event 1: Toss a coin
Event 2: Toss a coin
Use a tree diagram to work out the probability of HH

tree diagram

Hampshire Services HIAS SCHOOL IMPROVEMENT

$$
\mathrm{P}(\mathrm{HH})=\frac{1}{4}
$$

Event	H	T
H	HH	HT
T	TH	TT

grouped (data)

Length (feet)	Frequency (f)
$0 \leq \mathrm{ft}<10$	2
$10 \leq \mathrm{ft}<20$	6
$20 \leq \mathrm{ft}<30$	9
$30 \leq \mathrm{ft}<40$	5
$40 \leq \mathrm{ft}<50$	3

The number of different colour smarties in a pack of 25

It is not possible to group the data as each colour is separate

colour	Frequency (f)
Green	2
Orange	6
Blue	9
Yellow	5
Purple	$\mathbf{3}$

mean (\bar{x})

The mean average of $6,11,16$ is 11

$$
\begin{aligned}
& (6+11+16) \div 3=11 \\
& \bar{x}=11
\end{aligned}
$$

The mean (\bar{x}) can be thought of as 'equal' shares
 HIAS SCHOOL IMPROVEMENT

The median of $12,6,3,5,8$ is 6
$3,5, \underline{6}, 8,12$

median

Middle value of this data set is 6

The median of $12,6,3,5,8$ is 6
$3,5,6,8,12$

Hampshire

The mode of $8,5,6,8,9,8$ is 8
$5,6,8,8,8,9$

mode

Hampshire

The median of $12,6,3,5,8$ is 6
$3,5, \underline{6}, 8,12$
' 8 ' occurs most frequently

The mode of $8,5,6,8,9,8$ is 8
$5,6,8,8,8,9$

range

Services
Services
The range of $12,6,3,5,8$ is 9
It is the difference between the maximum (12) and the minimum (3) value in the set.

$$
\begin{aligned}
& 3,5,6,8,12 \\
& 12-3=\underline{9}
\end{aligned}
$$

The range of this data set is 9
The median of $12,6,3,5,8$ is 6
$3,5, \underline{6}, 8,12$

outlier

In a maths test, the following marks were scored:
$25,29,3,32,85,33,27,28$
Both 3 and 85 are outliers.
They lie outside the main cluster of scores.
\qquad HIAS SCHOOL IMPROVEMENT

In a maths test, the following marks were scored:
$25,29,3,32,85,33,27,28$
The range of scores is 82
$85-3=82$

Example

bivariate (data)

Picture, model, or diagram

With bivariate data we have two sets of related data we want to compare.

Ice cream sales versus the temperature on that day. The two variables are 'Ice cream sales' and
'Temperature'.

The warmer the temperature, the more ice creams are sold.
'Temperature' and 'Ice

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Ice Cream Sales $(£)$
14.2	215
16.4	325
11.9	185
15.2	332
18.5	406
22.1	522
19.4	412
25.1	614
23.4	544
18.1	421
22.6	445
17.2	408
13.9	207
25.8	620

Non-Example

Univariate means one variable (one type of data)
Example: Travel Time (minutes): 15, 29, 8, 42, 35, 21, 18, 42, 26
The variable is Travel Time

Bivariate data
Example

scatter graphs

\qquad
Non-Example

Scatter graphs are used to compare two sets of data.
Positive correlation means that as one variable increases, so does the other. No correlation means that one variable does not have an effect on the other. Negative correlations means that as one variable increase, the other decreases.

histogram

Histograms look like bar charts but the area of the bar represents the frequency, not the height.
The class widths can be unequal in a histogram
The ages of 28 children on a school trip

Age	Frequency	Class width	Frequency density
$4-9$	6	6	$6 \div 6=1$
$10-15$	18	6	$18 \div 6=3$
$16-17$	4	2	$4 \div 2=2$

Hampshire Services

 HIAS SCHOOL IMPROVEMENTNon-Example

Picture, model, or diagram

Sample: A collection of data from part of the population

Example: A random selection of five buttons from a box of forty buttons

sample

\qquad Services Non-Example Picture, model, or diagram HIAS SCHOOL IMPROVEMENT

The blue buttons are a random sample from the population
This is the population \sim all the 40 buttons in the box

population

Non-Example

(\%)	(\%)	(®)	(\%)	(8)
(®)	(®)	(\%)	©	(\%)
(\%)	(8)	(®)	(\%)	(\%)
(\%)	©	©	©	(P)
(®)	(9)	(9)	(9)	(9)
(\%)	(\%)	(9)	(\%)	(P)
(®)	(\%)	(\%)	(®)	©
(P)	(P)	©	(P)	(P)

This is the population \sim all the 40 buttons in the box
Services
Services
\qquad
HIAS SCHOOL IMPROVEMENT

The blue buttons are a random sample from the population

cumulative frequency

Heights, h (cm)	Frequency	Cumulative frequency
$150<\mathrm{h} \leq 160$	13	13
$150<\mathrm{h} \leq 160$	33	46
$150<\mathrm{h} \leq 160$	35	81
$150<\mathrm{h} \leq 160$	11	92

Non-Example

Heights, $\mathrm{h}(\mathrm{cm})$	Frequency
$150<\mathrm{h} \leq 160$	13
$150<\mathrm{h} \leq 160$	33
$150<\mathrm{h} \leq 160$	35
$150<\mathrm{h} \leq 160$	11

This data shows the ages of 11 people on a boat trip

$$
9,10,10,12,13,14,17,18,19,21,21
$$

The data is ordered and the median, quartiles, maximum and minimum values identified.

This is then plotted on a horizontal axis as a box for the middle 50% of the data, with 'whiskers' to show the first and last 25\%
\qquad HIAS SCHOOL IMPROVEMENT

Cumulative frequency diagram for heights of students

9, 10, 10, 12, 13, 14, 17, 18, 19, 21, 21

lower quartile

Lower quartile (Q1) $=4$
Median (Q2) $=5$
Upper quartile (Q3) $=7$

Quartiles are the values that divide a list of numbers into quarters
Example: 5,7,4,4,6,2,8
Order: 2,4,4,5,6,7,8

Quarter the list:
Lower quartile $(\mathrm{Q} 1)=4$
Median (Q2) = 5
Upper quartile (Q3) = 7
\qquad
\qquad
Uper quatile (Q3)

upper quartile

Lower quartile $(\mathrm{Q} 1)=4$
Median (Q2) = 5
Upper quartile $(Q 3)=7$

Quartiles are the values that divide a list of numbers into quarters
Example: 5,7,4,4,6,2,8
Order: 2,4,4,5,6,7,8
Quarter the list:
Lower quartile (Q1) $=4$
Median (Q2) $=5$
Upper quartile (Q3) = 7
$\underset{\text { Services }}{\text { Hampshire }}$ Services HIAS SCHOOL IMPROVEMENT

The mode of $8,5,6,8,9,8$ is 8
$5,6,8,8,8,9$

Quartiles are the values that divide a list of numbers into quarters
Example: 5,7,4,4,6,2,8
Order: 2,4,4,5,6,7,8

inter quartile range

Picture, model, or diagram

Hampshire

Lower quartile (Q1) = 4
Median (Q2) = 5
Upper quartile $(\mathrm{Q} 3)=7$
Inter quartile range (IQR) $=7-4=3$

$$
2,4,4,5,6,7,8
$$

The range for this data set is $8-2=6$

Hampshire
Services
HIAS SCHOOL IMPROVEMENT

Hampshire
Services
HIAS SCHOOL IMPROVEMENT

