Supporting Primary Children with Learning Mathematics at Home

A Parent's Guide

The Hampshire Mathematics Team understands how challenging it can be for parents and schools during periods of blended and online learning at home or supporting pupils with homework. We have produced a guide to give parents some ideas about how they can support their children with the mathematics they are learning about with their school.
It is important that both children and parents enjoy this experience, whilst ensuring that the methods, models, and images the school are using for teaching and learning are understood and used well at home.

This document contains some guidance as to the sorts of questions parents might use when working with their children to help them think about the mathematics they are working on. For each year group in the national curriculum, an example problem shows parents how they could ask a question to engage the child and encourage them to think deeply. The examples are pitched at the sort of mathematics we would expect a child to know and understand at the end of each year, so the mathematics that schools will be asking children to think about and learn may be different. For some topics, children will be working towards the pitch in the question examples and for other topics, children may be feeling secure with these ideas and the school will be challenging them to look deeper.

Another important element of learning mathematics is knowing key number facts and using models, images, and verbal prompts to help recall of these facts. This document includes key number facts for each year group, including reception, together with some examples of the models and images that schools may be using. There is also a short glossary of some of the mathematical terms that children may need to know and understand when accessing their mathematical tasks. It is not an exhaustive list but provides a core of key words.

We hope that both schools and parents find this resource useful when supporting the children with learning mathematics at home.

HIAS SCHOOL IMPROVEMENT

Questions: Key Stage 1	Year 1	Year 2
If I know this, then what else do I know ?	What else do you know? If you know this: $12-9=3$ what other facts do you know?	What else do you know? If you know this: $87=100-13$ what other facts do you know?
What is the same and what is different?	What do you notice? $\begin{aligned} & 11-1=10 \\ & 11-10=1 \end{aligned}$ Can you make up some other number sentences like this involving 3 different numbers?	Missing numbers $\begin{aligned} & 91+\square=100 \\ & 100-\square=89 \end{aligned}$ What number goes in the missing box? What is the same and what is different about the calculations?
Which is harder and which is easier?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 3+7= \\ & 13+7= \\ & 3+9= \\ & 9+9= \end{aligned}$ Explain why you think the hard questions are hard?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 23+10= \\ & 93+10= \\ & 54+9= \\ & 54+1= \end{aligned}$ Explain why you think the hard questions are hard?
What if I change...?	Spot the mistake: $5,6,8,9$ What is wrong with this sequence of numbers? What if change the sequence to: $3,4,6,7$ What is wrong with this sequence of numbers?	Spot the mistake: $45,40,35,25$ What is wrong with this sequence of numbers? What if change the sequence to: $95,105,110,115$ What is wrong with this sequence of numbers?
Can you show me and example of.... and another?	Can you show me an addition calculation with a sum of 10? and another....? and another....?	Can you show me an addition calculation with a sum of 100 ? and another....? and another....?

Services
HIAS SCHOOL IMPROVEMENT

Questions : Lower Key Stage 2	Year 3	Year 4
If I know this, then what else do I know ?	Use a fact $20 \times 3=60 .$ Use this fact to work out $\begin{aligned} & 21 \times 3=22 \times 3= \\ & 23 \times 3=24 \times 3= \end{aligned}$	Use a fact $63 \div 9=7$ Use this fact to work out $\begin{aligned} & 126 \div 9= \\ & 252 \div 7= \end{aligned}$
What is the same and what is different?	Making links $4 \times 6=24$ How does this fact help you to solve these calculations? $\begin{aligned} & 40 \times 6= \\ & 20 \times 6= \\ & 44 \times 6= \end{aligned}$	Making links $8 \times 7=56$ How does this fact help you to solve these calculations? $\begin{aligned} & 80 \times 7= \\ & 40 \times 7= \end{aligned}$ $48 \times 6=$
Which is harder and which is easier?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 323+10= \\ & 393+10= \\ & 454-100= \\ & 954-120= \end{aligned}$ Explain why you think the hard questions are hard?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 13323-70= \\ & 12893+300= \\ & 19354-500= \\ & 19954+100= \end{aligned}$ Explain why you think the hard questions are hard?
What if I change...?	Use the inverse Use the inverse to check if the following calculation is correct: $12 \div 3=4$ What if I change $\mathbf{1 2}$ to $\mathbf{1 5}$? How will the division calculation change? Use the inverse to check you are correct	Use the inverse Use the inverse to check if the following calculations are correct $117 \div 9=13$ What if I change $\mathbf{1 1 7}$ to $\mathbf{1 2 6}$? How will the division calculation change? Use the inverse to check you are correct
Can you show me and example of.... and another?	Can you show me a multiplication calculation with a product of 24? and another....? and another....?	Can you show me a multiplication calculation with a product of 100 ? and another....? and another....?

Services
HIAS SCHOOL IMPROVEMENT

Questions: Upper Key Stage 2	Year 5	Year 6
If I know this, then what else do I know?	What else do you know? If you know this: $6.7+3.3=10$ what other facts do you know? Use a fact $3 \times 75=225$ Use this fact to work out $\begin{aligned} & 450 \div 6= \\ & 225 \div 0.6= \end{aligned}$	What else do you know? If you know this: $86.7+13.3=100$ what other facts do you know? Use a fact $12 \times 1.1=13.2$ Use this fact to work out $\begin{aligned} & 15.4 \div 1.1= \\ & 27.5 \div 1.1= \end{aligned}$
What is the same and what is different?	Making links $7 \times 8=56$ How can you use this fact to solve these calculations? $\begin{aligned} & 0.7 \times 0.8= \\ & 5.6 \div 8= \end{aligned}$	Making links $0.7 \times 8=5.6$ How can you use this fact to solve these calculations? $\begin{aligned} & 0.7 \times 0.08= \\ & 0.56 \div 8= \end{aligned}$
Which is harder and which is easier?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 213323-70= \\ & 512893+300= \\ & 819354-500= \\ & 319954+100= \end{aligned}$ Explain why you think the hard questions are hard?	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 213323-70= \\ & 512893+37= \\ & 8193.54-5.9= \end{aligned}$ Explain why you think the hard questions are hard?
What if I change...?	13×9 is the same as $(10 \times 9)+(3 \times 9)$ $\{90+27=117\}$ 13×9 is the same as $(13 \times 10)-(13 \times 1)$ $\{130-13=117\}$	```123\times9 is the same as (100 < 9)+(20\times9)+(3\times9) {900+180+27=1107} 13\times9 is the same as (13\times10)-(13\times1) {130-13=117}```

	What if I change one of the numbers? Work out 14×9 23×9 13×11	What if I change one of the numbers? Work out 14×9 23×9 13×11
Can you show me and example of.... and another?	Can you show me an example of a fraction that is the same as $\frac{1}{5}$? ...and another fraction that is the same as $\frac{1}{5}$? ...and another fraction that is the same as $\frac{1}{5}$? $\left\{\frac{1}{5}=\frac{2}{10}, \frac{10}{50}, \frac{20}{100}, \ldots \ldots ..\right\}$	Can you show me an example of a fraction that is the same as $\frac{3}{5}$? ...and another fraction that is the same as $\frac{3}{5}$? ...and another fraction that is the same as $\frac{3}{5}$? $\left\{\frac{3}{5}=\frac{6}{10}, \frac{30}{50}, \frac{60}{100}, \ldots . ..\right\}$

Key Mathematical Words and their meanings:

Word	Meaning
Acute angle	An angle between 0° and 90°
Decimal fraction	A number that has a zero or whole number part and a part that is less than 1 For example 1.75 is a decimal fraction with 1 as the whole number part and 0.75 as the part that is less than 1.
Denominator	The bottom number in a fraction. It tells us how many equal pieces the whole is divided into. For $\frac{5}{7} \sim$ the ' 7 ' is the denominator. It shows that the whole is divided into 7 equal pieces .
Digit	The numbers 0 to 9 in a number that is 10 or bigger. 23 has the digits two and three The two represents 2 tens and the three represents 3 ones.
Difference	When one number is taken away, or subtracted, from another number, the result is called the difference. The difference between 4 and 3 is 1 because $4-3=1$
Equivalent	Has the same value. Is the same as... Two fractions are equivalent if the relationship between the numerator and the denominator is the same, so $\frac{1}{3}$ and $\frac{3}{9}$ equivalent since the denominator is $3 \times$ the numerator for both fractions.
Factor (pairs)	When two whole numbers are multiplied together to get a product, those two numbers are factors of the product. Also, a factor is a whole number that divides into another whole number exactly with no remainder $3 \times 4=12 \quad 3$ and 4 are factors of 12 $12 \div 4=3 \quad 4$ is a factor of 12
Grouping	Divide a quantity into equal groups for division . $20 \div 4=5 \quad 20$ divided into 4 equal groups gives 5 in each group
Improper fractions	A fraction where the numerator is greater than the denominator Examples of improper fractions include $\frac{5}{3}, \frac{14}{3}, \frac{9}{8}$
Integer	A whole number $53,17,0$ and -19 are all integers
Inverse	Inverse operations 'undo' each other. Addition and subtraction are inverses of each other. E.g. $3+4=7$ and $7-4=3$ Multiplication and division are inverses of each other. E.g. $70 \div 10=7$ and $7 \times 10=70$
Mixed number	An improper fraction can be expressed in two parts, the whole number, and the remaining proper fractions Examples of mixed numbers include $1 \frac{1}{3}, 5 \frac{2}{3}, 2 \frac{3}{8}$

HIAS SCHOOL IMPROVEMENT

Multiple	When multiplying two whole numbers together, the product is a multiple of each. $8 \times 7=56 \quad 56$ is a multiple of 7 and 56 is a multiple of 8 Other multiples of 8 are: $8,16,24,32,40,48,56,64, \ldots .$.									
Number line	A line where numbers are represented by points upon it									
Number track	A sequence of connected cells where each cell represents a number	2	3	4	5	6	7	8	9	10
Numerator	The top number in a fraction. It tells us how many equal pieces we have. For $\frac{5}{7} \sim$ the ' 5 ' is the numerator. It shows 5 equal pieces out of the whole 7 equal pieces.									
Obtuse angle	An angle greater than 90° but less than 180°									
Partition	To separate into subsets. To split a number into component parts The number 23 can be partitioned into $20+3$ and also $19+4$ and $10+13$									
Place value	The value of the digit that relates to its position or place in a number. In the number 36 the digits represent 3 tens, and 6 ones respectively									
Prime number	A whole number greater than 1 that has exactly two factors, itself and 1 2 is a prime number (factors 2, 1) ; 41 is a prime number (factors 41, 1) ; 97 is a prime number (factors 97, 1)									
Product	When two numbers are multiplied together, the result is called the product. The product of 3 and 4 is 12 because $3 \times 4=12$									
Proper fraction	A fraction where the numerator is less than the denominator Examples of proper fractions include $\frac{1}{3}, \frac{2}{3}, \frac{3}{8}$									
Quotient	When one number is divided by another number, the result is called the quotient. The quotient of 20 and 10 is 2 because $20 \div 10=2$									
Reflex angle	An angle that is greater than 180° but less than 360°									
Sharing	Share a quantity into equal groups for division $20 \div 4=5 \quad 20$ shared between 4 gives 4 equal groups of 5									
Sum	When two numbers are added together, the result is called the sum. The sum of 3 and 4 is 7 because $3+4=7$									
Unit fraction	A proper fraction where the numerator is 1 Examples of unit fractions include $\frac{1}{3}, \frac{1}{10}, \frac{1}{55}$									

Primary Mathematics

Number facts, models, and images by year group

Hampshire
Services

Number Facts: Overview

National Curriculum for Mathematics in England: Summary of Aims:

- Become fluent in the fundamentals of mathematics, developing conceptual understanding and the ability to recall knowledge and facts accurately and rapidly
- Reason mathematically by making connections, following a line of enquiry and developing a justified argument
- Solve problems by applying mathematical skills, knowledge and understanding to a variety of routine and non-routine problems, including in real-life contexts
Focus of number study in Key stage
(Year 1 and Year 2)
Develop confidence and mental fluency with whole numbers, counting and place value.

Work with numerals, words and the four arithmetic operations (+,-, x, -) using visual prompts and practical resources.

Use a range of measures such as length, mass, capacity, volume, time, and money

By the end of Year 2:

- Recall and use number bonds to 20
- Recall and use multiplication and division facts for the $2 x, 5 x$ and $10 x$ tables.
- Identify odd and even numbers
- Use and understand place value,
- Read and spell age appropriate mathematical vocabulary
Focus of number study in Lower Key stage 2
(Year 3 and Year 4)

Become increasingly fluent with whole numbers and the four arithmetic operations $(+,-, x, \div)$, including known number facts and the concept of place value.

Develop efficient written and mental methods
Perform calculations accurately with increasingly large whole numbers

Solve a range of problems including with simple fractions and decimals

By the end of Year 4:

- Add and subtract numbers up to 4 -digits using formal and informal methods
- Recall and use all multiplication and division facts up to and including the 12 x table.
- Know and use common equivalences between fractions and decimals
- Read and spell age appropriate mathematical vocabulary correctly.

Focus of number study in Upper Key stage 2 (Year 5 and Year 6)
Extend understanding of the number system and place value to include larger integers (whole numbers).

Develop connections between multiplication, division, fractions, decimals, percentages, and ratio

Begin to use algebraic techniques to solve simple arithmetic problems

By the end of Year 6:

- Be fluent in written methods for the four arithmetic operations ($+,-, \mathrm{X}, \div$), including formal methods such as column addition and subtraction, long and short multiplication and division.
- Calculate with integers and fractions
- Read and spell age appropriate mathematical vocabulary correctly.

Number Facts: Reception Year

Early Learning Goal 11: Number

Children count reliably with numbers from 1 to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving, and sharing

Early Learning Goal 12: Shape, space, and measures
Children use everyday language to talk about size, weight, capacity, position distance, time, and money to compare quantities and objects and to solve problems. They recognise, create, and describe patterms. They explore language to describe them.

Number Facts: Number and place value

- Know the sequence of counting in ones from 1 to 20 (by rote)
- Recognise numerals 0-9
- Accurately count up to 20 objects
- Place numbers to 20 in order

Proposed Early Learning Goals 2021 currently under consultation

Number

- Have an understanding of numbers to 10 , linking names of numbers, numerals, their value, and their position in the counting order
- Subitise (recognise quantities without counting) up to 5
- Automatically recall number bonds for numbers 0 5 and for 10 , including corresponding partitioning facts.
Numerical Patterns
- Automatically recall double facts up to $5+5$.

Compare sets of objects up to 10 in differen
contexts, considering size and difference.
Explore patterns of numbers within numbers
Explore pand evens and odds. 10 , including evens and odds.

Hampshire Services

- Use the language of 'more' and 'fewer' to compare two sets of objects.
- Find the total number of items in two groups by counting all of them.
- Say the number that is one more than a given number to 20.
- Say the number that is one less than a given number to 20.
- Recognise when a quantity or items is reduced or increased by one.
- Subtract a quantity within 20 . Say how many are left by counting (or counting back)
Double small numbers (e.g. the amount shown on two dice)
Share objects equally, or fairly, by putting them in equal sized groups

- Develop an awareness of measure through practical experiences (e.g. length, weight/mass, capacity, distance, height) in readiness for more precise measuring in KS1
- Develop an awareness of time passing in preparation for telling the time.
- Begin to use the language of time (next, before) to sequence personal events
- Develop their use and understanding of positional language.
xplore 2-D and 3-D shape (e.g. through constructions and patterns)

Mathematical models and images to support conceptual understanding underpinning key facts in Reception

number tracks and number lines

Hampshire Services
masemaximerem County Council

HIAS Maths Team: Number Facts: Year 1

Number and place value

Puple should be taught to:

- count to and accoss 100 , forwards and backwards
beginning with 0 or 1 , or from any given number
- count, read and write numbers to 100 in numerals
- given a number, identify one more and one less

Addition and subtraction

Pupls should be taught to:

- read, write, and interpret mathematical statements
involving addition $(+)$ and sibtraction involving addition ($(+)$ and subtraction $(-)$ and equals $(=)$
signs
- represent and use number bonds and related
- subtractions facts within 20
- add and subtract one-digit and two-digit numbers to 20.
- solve one-step problems that involve addilion and
 suburaction, using concrete obbiects and pictorial
representations, and missing number problems such as
$7=\square .9$.

Fractions

Puples should be taught to:
recognise, find, and name a hall as one of two equal parts of an object, shape or quarnety recognise, find, and name a quarter as ane or parts or an object, ,hape or quandy
recogine, find, and name a quater as one of four equal
parts of an object, shape, or quarnity

- Know the number bonds and related subtraction facts for all numbers to 5

For example:

$4+0=4$	$4-0=4$
$3+1=4$	$4-1=3$
$2+2=4$	$4-2=2$
$1+3=4$	$4-3=1$
$0+4=4$	$4-4=0$

- Know the number bonds for all numbers to 10 and the related subtraction facts.
- Know the number bonds for all numbers to 20 and the related subtraction facts.
For example

$$
\begin{array}{ll}
10+2=12 & 12-2=10 \\
9+3=12 & 12-3=9 \\
8+4=12 & 12-4=8
\end{array}
$$

- Recognise that 'teens' numbers comprise one ten and some ones.

Hampshire sonices

Measure

recognise and know we value of different denominatons of coins and notes
sequence events in chronological order using language
such as belore and after, next, frist, today, yesterday such as before and atter, next, first, loday, y
tomorrow, moming, aflemoon, and evering

- recognise and use language relating to dates, incluaing days of the week, weeks monthe and years

- Say the days of the week and the months of the year in the correct order.
- Recognise the coins and notes of the realm and starting with $1 \mathrm{p}, 2 \mathrm{p}$, 5p, 10p, 20p
- Apply number bond knowledge to coins
$10 \mathrm{p}+1 \mathrm{p}=11 \mathrm{p}$
$10 p+2 p=12 p$
Know the sequence of counting in multiples of 10 .
- Know the sequence of counting in multiples of 5 .
Say one more or one less than any number up to 20 .

Number line to support counting in multiples of 2

Counting in $2 s, 5 s$ and $10 s$ in the context of money

Number line with addition equation

Tens frames with counters to

Tens frames with counters to

Fourteen is one ten and four ones $14=10+4$

$7-3=4$
Cherry partitioning model with subtraction equation

$3+1=4$
Tens frame with addition equation

Serices

Mathematical models and images to support conceptual understanding underpinning key facts in Year 2

18

$9+9=18$
Partitioning 28 into 20 and 8

Finding the difference using a bar model and a number line

Base 10 material and equations to support adding a multiple of 10

Tens frames with counters and number lines to support subtracting ones from a multiple of 10

100 -square for skip counting in tens from any number

Base 10 material and equations to support adding 2 two-digit numbers

(5)

(5)

(5)

Three bags of five biscuits with three 5 -value counters to support skip counting for $3 \times 5=15$

Mathematical models and images to support conceptual understanding underpinning key facts in Year 3

Bar models showing 100 partitioned into 2, 4, 5 and 10 equal parts.
(10) (10) (10) (10) (10)
(10) (10) (10)
(10) (10) (10) (10)
(10)
(10)

Number line and array showing that adjacent multiples of 8 (32 and 40) have a difference of 8

$\frac{3}{8}+\frac{2}{8}=\frac{5}{8}$
$\frac{5}{8}-\frac{2}{8}=\frac{3}{8}$

100 -grid to show the complement 62+38=100Hampshire
Services

Number Facts: Year 4

Number and place value
Pupils should be taught to.
count from 0 in multiples of $6,7,9,25$
and 1000
less than a given number up to 10,000

Addition and subtraction Pupils should be taught to: - order and compare numbers beyond 1000 add and subtract numbers with up to 4
digits

Multiplication and division

Pupils should be taught to:
recall and use multipliction
division facts for multication and
division facts for multiplication tables up
to 12×12
numbers by a one-digit number

Fractions
Pupils should be taught to:

- count up and down in hundredths; recognise that hundredths arise from dividing an object into 100 equal parts
- recognise and write decima
equivalents of $\frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$

Measurement
Pupils should be taught to

- convert between different units of measure (e.g. kilometres to metres, hours to minutes)

Mathematical models and images to support conceptual understanding underpinning key facts in Year 4

eighteen 100-value place-value counters in two tens frames to show 1800

Representations of the place value composition of 5,342

array to show that $14 \times 3=10 \times 3+4 \times 3$

array to show that $14 \times 3=2 \times 7 \times 3$

$80 \times 10=800 \quad 80+10=8$
Gattegno chart to multiply and divide by 10

number-line to identify the previous and

1,000			
250	250	250	250

1.000				
200	200	200	200	200
1,000				
$100 \mid 100$	100100	00100	$100 \mid 100$	$100 \mid 100$

bar models showing 1,000 partitioned into $2,4,5$, and 10 equal parts and
$1000 \div 2=500$ and $\frac{1}{2}$ of $1000=500$ $1000 \div 4=250$ and $\frac{1}{4}$ of $1000=250$ $1000 \div 5=200$ and $\frac{1}{5}$ of $1000=200$ $1000 \div 10=100$ and $\frac{1}{10}$ of $1000=100$

bar models showing $1 \div 10=0.1$ and $3 \div 10=0.3$

Hampshire
Services

Number Facts: Year 5

Addition and subtraction

Mupils should be taught to:

- add and subtract with more than four digits and
with decimals (informal and formal methods)
- recall prime numbers to19
- multiply and divide mentally using known facts
multiply and divide whole and decimal numbers by
10,100 and 1000
recognise and use square numbers

Fractions, decimals and percentages
Pupils should be taught to: (e.g. $0.8=\frac{1}{10}$)

- reocgnise and use thousandths, relating them tenths, hundredths, and decimal equivalents recognise the per cent symbol (\%) and know that per cent relate to the number of parts per hundred - write percentages as a fractions with a (e.g. $0.71=\frac{71}{100}=71 \%$)

Measurement
Pupils should be taught to
convert between different units of metric measure such as kilometre to metre, centimetre to metre, sentimetre and millimetre, gram and kilogram, itite and millilitre
and common imperial units such as inches, poun and pints

Geometry
Pupils should be taught to:

- identify angles at a point (one whole turn) as 360°
- identify angles at a point on a straight line (half a
identify angles in a right angle (quater of a tum)
- Known the mum of thiles of 90° in any triangle is 180° - know the sum of the angles in any triangle is is any quadriateral is

Services

Mathematical models and images to support conceptual understanding underpinning key facts in Year 5

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Using a number track to generate multiples of primes to identify primes: 2, 3, 5, 7, 11, 13, 17, 19

1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

Gattegno chart showing thousands, hundreds, tens, ones, tenths and hundredths

1				1				
0.5		0.5		0.2	0.2	0.2	0.2	0.2
1				1				
0.25	0.25	0.25	0.25		0	10	10.1	0.1

Bar models showing 1 partitioned into $2,4,5$ and 10 equal parts

$$
\begin{aligned}
& 1 \div 2=0.5 \text { and } \frac{1}{2} \text { of } 1=0.5 \\
& 1 \div 4=0.25 \text { and } \frac{1}{4} \text { of } 1=0.25 \\
& 1 \div 5=0.2 \text { and } \frac{1}{5} \text { of } 1=0.2 \\
& 1 \div 10=0.1 \text { and } \frac{1}{10} \text { of } 1=0.1
\end{aligned}
$$

Ratio tables for conversion

> A hundred grid divided into four equal parts.

Key multiplication facts to support place value calculations, fractions and ratio

$2 \times 2=4$							
$3 \times 2=6$	$3 \times 3=9$						
$4 \times 2=8$	$4 \times 3=12$	$4 \times 4=16$					
$5 \times 2=10$	$5 \times 3=15$	$5 \times 4=20$	$5 \times 5=25$				
$6 \times 2=12$	$6 \times 3=18$	$6 \times 4=24$	$6 \times 5=30$	$6 \times 6=36$			
$7 \times 2=14$	$7 \times 3=21$	$7 \times 4=28$	$7 \times 5=35$	$7 \times 6=42$	$7 \times 7=49$		
$8 \times 2=16$	$8 \times 3=24$	$8 \times 4=32$	$8 \times 5=40$	$8 \times 6=48$	$8 \times 7=56$	$8 \times 8=64$	
$9 \times 2=18$	$9 \times 3=27$	$9 \times 4=36$	$9 \times 5=45$	$9 \times 6=54$	$9 \times 7=63$	$9 \times 8=72$	$9 \times 9=81$

Hampshire
Services

Hampshire
County Council

Number Facts: Year 6

Ratio and proportion
Pupils should be taught to:
solve problems involving the calcultion of percentages of quantities such as 15% of 360 and then use their solutions for comparison

- represent fractions sums such as $\frac{1}{4}+\frac{3}{4}$ in ratio form b) as 1.
simpiify ratios such as 2.6 to their simplest form ($1: 3$ in this case) using common factors

Fractions, decimals, and percentages
Pupils should be taught to:
associate a fraction with division and calculate䢂 (e.g. $0.375=\frac{-}{8}$)
ecall and use equivalences between vulgar fractions, decimals, and percentages

- use common factors to simplify fraction
- add and subtract fractions with differen
denominators and mixed numbers
- multiply simple pair of proper fraction
- multiply one-digit numbers with up to two decimal
places by whole numbers (e.g. 1.37×5)
- divide numbers where the quotient has up to two decimal places (e.g. $145+4=3.75$)

Measurement

Pupils should be taught to.
convert between common imperial and metric unity of measure. (e.g. miles and kilometres)
the area and volume of shapes.

- know and use formulse for the area of a triangle,
the area of a rectangle, the area of a
the area of a rectangle, the area of a parallelogram, the volume of a cuboid and the paralleegram, the volume of a cuboid and
diameter of a circle (diameter $=2 \times$ radius)

Geometry

Pupils should be taught to:

- illustrate and name parts of circles, including the adius, diameter, and circumference.
know and use the relationship between the
diameter and the radius (diameter $=2 \mathrm{x}$ radius) know that vertically opposite angles are equal and

Number facts: Ratio and proportion

- Derive new \% facts from known facts: For example
1% doubled will give 2% of a quantity 10% halved will give 5% of a quantity 100% is the whole amount, so twice as much is the same as 200%
- Fluency with multiplication and division facts up to 12×12 and derive others beyond known facts.
- For example
$24: 48$ simplifies to $1: 2$ with a common factor of 24
(24×1 and 24×2)
- $12.5 \%=0.125=1$ $37.5 \%=0.375=\frac{3}{8}$ $62.5 \%=0.625=5$ $82.5 \%=0.825=\frac{7}{8}$ $112.5 \%=1.125=\frac{8}{8} \quad 125 \%=1.25=\frac{9}{8}$
- $33.3 \%=0.333 \ldots=\frac{1}{3}$
$66.6 \%=0.666 \ldots=\frac{2}{3}$
$100 \%=1.0=\frac{3}{3}$
$133.3 \%=1.333 \ldots=\frac{4}{3}$
$266.6 \%=2.666 \ldots=\frac{8}{3}$
$0.3=0.3333333 \ldots .$. a recurring decimal continually repeats and does not terminate

Hampshire
services

Mathematical models and images to support conceptual understanding underpinning key facts in Year 6

