Term	Wk1	Wk2	Wk3	Wk4	Wk5	Wk6		Wk7	Wk8	Wk9	Wk10	Wk11	Wk12	
Autumn		A1			B1			M1	C1			D1		
Spring		A2			B2	M2	E		C2			D2	M3	err
							Ter							of 1
Summer		A3			B3		alf [.]		C3			D3	M4	p
							Н							Ш

Content common to all blocks	Block A	Block B	Block C	Block D
Fluency (Place value and a sense of number) Problem solving Reasoning	Addition and subtraction (for whole and part numbers) Geometry and Measure	Multiplication and division (for whole and part numbers) Statistics and Measure	Addition and subtraction (for whole and part numbers) Geometry and Measure	Multiplication and division (for whole and part numbers) Statistics and Measure

<u>Notes</u>

- Assessment Milestones (M1-4) based on HAM phase model, KPIs and end of year expectations.
- Big Ideas taken from NCETM Assessment for Mastery documents
- The use of concrete, pictorial and abstract multiple representations for number and calculation is implicit in every lesson.
- Recording should always show a range of representations including, as appropriate, the number line; use of Dienes, Numicon, Cuisenaire etc.; arrays; bar models; informal jottings; different ways to solve the same problem using the child's own recording methods and more formal methods when ready.

It is better to have five ways to solve one problem, than one way to solve five.

Can you: Say it; make it; draw it; write it; explain it?

Five Questions to support mathematical thinking

- If you know this, then what else do you know?
- Can you give me an example of.... and another....and another...?
- What if you change....?
- Which is harder and which is easier.....?
- What is the same and what is different?

		The Big Ideas in Mathematics: Y4: NCETM
	 Imagining the position of numbers on a h 	prizontal number line helps us to order them: the number to the right on a number line is the
Vd bu	larger number. So 5 is greater than 4, as 5	is to the right of 4. But –4 is greater than –5 as –4 is to the right of –5.
	 Rounding numbers in context may mean 	ounding up or down. Buying packets of ten cakes, we might round up to the nearest ten to make
ers	sure everyone gets a cake.	
qu	• Estimating the number of chairs in a room	for a large number of people we might round down to estimate the number of chairs to make
NC	sure there are enough.	
	 We can think of place value in additive te 	ms: 456 is 400 + 50 + 6, or in multiplicative terms: one hundred is ten times as large as ten.
p c	 It helps to round numbers before carrying 	out a calculation to get a sense of the size of the answer. For example, 4786 – 2135 is close to
n ar ctio	5000 – 2000, so the answer will be aroun	1 3000. Looking at the numbers in a calculation and their relationship to each other can help
itio	make calculating easier. For example, 301	2 – 2996. Noticing that the numbers are close to each other might mean this is more easily
Addi Sub	calculated by thinking about subtraction a	s difference.
4		
uo	• It is important for children not just to be a	ble to chant their multiplication tables but to understand what the facts in them mean, to be
ivisi	able to use these facts to figure out other	s and to use them in problems.
D P	• It is also important for children to be able	to link facts within the tables (e.g. 5× is half of 10×).
ano	 They understand what multiplication means 	ns and see division as both grouping and sharing, and to see division as the inverse of
ion	multiplication.	
icat	 The distributive law can be used to partition 	on numbers in different ways to create equivalent calculations. For example, $4 \times 27 = 4 \times (25 + 2)$
tipl	$= (4 \times 25) + (4 \times 2) = 108.$	
Mul	Looking for equivalent calculations can m	ake calculating easier. For example, 98 × 5 is equivalent to 98 × 10 ÷ 2 or to (100 × 5) – (2 × 5). The
_	array model can help show equivalences.	
10	• Fractions arise from solving problems, wh	ere the answer lies between two whole numbers.
ions	• Fractions express a relationship between	a whole and equal parts of a whole. Children should recognise this and speak in full sentences
act	when answering a question involving frac	tions. For example, in response to the question <i>What fraction of the chocolate bar is shaded?</i> the
Ē	pupil might say I wo sevenths of the whole	chocolate bar is shaded.
	Equivalency in relation to fractions is important	ortant. Fractions that look very different in their symbolic notation can mean the same thing.
ure it	• Ine smaller the unit, the greater the num	per of units needed to measure (that is, there is an inverse relationship between size of unit and
easi	measure).	
ž		

Beometry	•	During this year, pupils increase the range of 2-D and 3-D shapes that they are familiar with. They know the correct names for these shapes, but, more importantly, they are able to say why certain shapes are what they are by referring to their properties, including lengths of sides, size of angles and number of lines of symmetry. The naming of shapes sometimes focuses on angle properties (e.g. a rectangle is right-angled), and sometimes on properties of sides (e.g. an equilateral triangle is an equal sided triangle).
0	•	Shapes can belong to more than one classification. For example, a square is a rectangle, a parallelogram, a rhombus and a quadrilateral.
	•	In mathematics the focus is on numerical data. This can be discrete or continuous.
S	٠	Discrete data are counted and have fixed values, for example, the number of children who chose red as their favourite colour (this has to be a whole
stic		number and cannot be anything in between).
tati	•	Continuous data are measured, for example at what time did each child finish the race? (Theoretically this could be any time: 67.3 seconds or 67.333
Ś		seconds, depending on the degree of accuracy this is applied)
	•	Continuous data are best represented with a line graph where every point on the line has a potential value.

Autumn Term Y4	Place Value and a Sense	Problem Solving and Reasoning	Core Calculation	Geometry, Measure and
	of Number		(four rules for whole and part numbers)	Statistics
A1	Find 1000 more than	Solve addition and subtraction	Addition and Subtraction	Geometry
	any given number	two-step problems in context,	Add and subtract three digit numbers	Compare and classify
	Recognise the place	deciding which operations to	using a variety of strategies	geometric shapes, based on
	value of each digit in a	use and why	Estimate and use inverse operations to	their properties and sizes.
	four-digit number (Th,		check answers to a calculation (use bar	Identify acute and obtuse
	Н, Т, О)		modelling and number lines to explain the	angles
			structure)	Complete a simple
				symmetric figure with
				respect to a specific line of
				symmetry.
				Describe positions on a 2D
				grid as coordinates in the
				first quadrant
				<u>Measure</u>
				Measure and calculate the
				perimeter of a rectilinear
				figure (including squares) in
				centimetres and metres
B1	Count in multiples of 25	Solve problems involving	Multiplication and Division	<u>Statistics</u>

	and 1000. Identify multiples of 2,3,4 and 8, using patterning to generate the next multiple. Identify, represent and estimate numbers using different representations. Round any number to the nearest 10, 100 Round decimals with one dp to the nearest whole number	multiplying and dividing by 10 and 100.	Use place value and known and derived facts to multiple and divide mentally, with informal jottings. <u>Fractions</u> Recognise and show using diagrams simple equivalent fractions Divide a one- or two-digit number by 10 or 100 (÷ or x by 100 = convert between £ and p, m and cm; ÷ or x by 10 = convert between cm and mm) Add or subtract fractions with the same denominator beyond one whole.	Interpret and present discrete and continuous data using bar charts and line graphs to show time. <u>Measure</u> Estimate, compare and calculate with money in £ and p Convert between pounds and pence			
	Assessment Milestone 1						
		HALF TE	RM	1			
C1	Order and compare numbers beyond 1000	Solve problems involving addition and subtraction with numbers up to four digits in context. Encourage pupils to estimate and show them 1000 objects for a sense of size of number.	Addition and Subtraction Add and subtract with up to four digits, using a range of representations and informal recording	Geometry Compare and classify geometric shapes, including different quadrilaterals, based on their properties. Identify lines of symmetry in 2-D shapes presented in different orientations <u>Measure</u> Read, write and convert between analogue and digital 12 and 24-hour clocks			
D1	Count in multiples of 6 Round any number to the nearest 10, 100 or 1000	Solve simple measure and money problems involving fractions	Multiplication and Division Recall and use multiplication and division facts for, 2x, 3x, 4x, 5x, 6x, 8x <u>Fractions</u>	<u>Measure</u> Estimate, compare and calculate with mass in kg / g Convert between kg and g			

			Recognise that hundredths arise when dividing a quantity by 100 and dividing tenths by 10. Find the effect of dividing a one-or two- digit number by 10 and 100, identifying the value of the digits in the answer as	
			the value of the digits in the answer as	
			ones, tenths and hundredths.	
CHRISTMAS HOLIDAYS				

Spring Term Y4	Place Value and a Sense	Problem Solving and Reasoning	Core Calculation	Geometry , Measure and
	of Number		(four rules for whole and part numbers)	Statistics
A2	Count backwards	Use partitioning with	Addition and Subtraction	Geometry
	through zero to include	appropriate resources, models	Add and subtract with up to four digits,	Describe movements
	negative numbers	and images to reason about	beginning to develop column methods	between positions as
		how column methods work	with concrete and pictorial	translations of a given unit to
		(conceptual to support	representations alongside	the left/right and up/down
		procedural)		(the square has moved 3
				squares to the left and 2
				squares down)
				Plot given points to draw the
				sides to complete a polygon.
				<u>Measure</u>
				Estimate, compare and
				calculate with capacity in
				litres and ml
B2	Count in multiples of 6,	Solve problems involving	Multiplication and Division	<u>Measure</u>
	25 and 1000 (link to 2x,	multiplying and dividing using	Multiply by 0 and 1, divide by 1.	Convert between units of
	3x, 4x, 5x and 10x)	the distributive law	Multiply a two-digit or three-digit number	length: km, m , cm
		(partitioning) to multiply two-	by a one-digit number in informal ways,	Convert between different
		digit by one-digit numbers	developing the idea of partitioning to	units of capacity: litres and
			support multiplying (use Dienes to show	ml

	1		1	
			this) <u>Fractions</u> Recognise and show, using diagrams.	
			families of common equivalent fractions	
			(use bar model and Cuisenaire rods to	
			support this)	
		Assessment M	ilestone 2	
		HALF TE	RM	
C2	Read Roman numerals to 100 (I to C) and know that, over time the numeral system changed to include zero and the concept of place value	Solve simple money and measure problems involving fractions and decimals to 2dps.	Addition and Subtraction Add and subtract with up to four digits, developing column methods where appropriate, with concrete and pictorial representations alongside	<u>Geometry</u> Compare and classify geometric shapes including different triangles, based on their properties. Identify acute and obtuse angles and compare and order angles up to two right angles by size.
D2	Order and compare numbers beyond 1000 Identify 1, 10, 100 more and less to support efficient calculation. Count up and down in hundredths. Recognise and write decimal equivalents of any number of tenths or hundredths	Solve contextual integer scaling problems, such as four times as high. Solve contextual correspondence problems, such as 3 hats and 4 coats ~ how many different outfits?	Multiplication and DivisionKnow or quickly derive multiplication anddivision facts up to 12x12 (arrays,repeated addition, partitioning)Use factor pairs in mental calculationsand partitioning (the distributive law) tomultiply up to 2-dogit by 1-digit numbersDevelop a reliable written method formultiplication of 2-digit or 3-digit by 1-digit numbers.FractionsRecognise and write decimal equivalentsto ½, ¼ and ¾Compare numbers with the same numberof decimal places up to two dps	Measure Convert between hours and minutes; minutes to seconds; years to months; weeks to days.

Assessment Milestone 3 EASTER HOLIDAYS

Summer Term Y4	Place Value and a Sense	Problem Solving and Reasoning	Core Calculation	Geometry and Measure
	of Number		(four rules for whole and part numbers)	,
A3	Explore partitioning up	Solve problems involving length	Addition and Subtraction	Geometry
	to numbers in different	where lengths are given in two	Continue to develop fluency with addition	Plot specified points to
	ways.	different units so that pupils	and subtraction by working with a few	complete a polygon on a
	How many ways can a	must convert before solving e.g.	four digit examples and generating all	coordinate grid. Reason
	partition 3?	I walked 3500 m and my friend	possible representations and solutions	about possible places if the
	(3+0; 2+1; 1+1+1)	walked 3.6 km. Who walked	e.g. 2563 + 3491 can be solved in a variety	final point in the
	How many ways can I	furthest, justify your answer.	of ways. What could it mean? Crowds at a	quadrilateral makes it into a
	partition 19 into two		sports match / ants in two ant hills	kite, or a rectangle, or a
	parts?		Show the solution using as many different	parallelogram
	(19+0; 18+1;)		ways as possible (bar model, Dienes,	<u>Measure</u>
	Model heuristics such as		partitioning in a range of ways, rounding	Convert between length
	being systematic and		and adjusting the answer and so on	measurements (km, m, cm
	patterning.			and mm)
B3	Round numbers to the	Solve comparison, sum and	Multiplication and Division	<u>Measure</u>
	nearest whole number,	difference problems involving a	Recall multiplication and division facts up	Convert between mass
	10, 100, 1000.	range of statistical charts and	to 12x12 (explore a range of	measurements (kg, g)
	Use rounding to	graphs.	representations to enable pupils to	<u>Statistics</u>
	estimate answers.		quickly call the facts to mind)	Interpret and present
	Explore decimal		Fractions	discrete and continuous data
	partitions of 1 and		Multiply and divide by 10, 100 and 1000	using appropriate graphical
	compare to known		in context.	methods including bar charts
	number bonds		Convert between fractions and decimals	and time graphs.
		HALF TE	RM	
C3	Count in multiples of	Solve problems involving	Addition and Subtraction	<u>Geometry</u>
	6,7,9	capacity and mass where pupils	Continue to develop efficient written and	Draw shapes with accuracy
		need to convert between units	mental methods, performing calculations	using mathematical

		to find a solution and justify	with increasingly large numbers (up to	reasoning and analyse	
		that solution,	four digits but could bridge to 10.000).	shapes and their properties,	
		,	Ensure that pupils reason about their	describing the relationship	
			chosen method and justify their choice	between them (all have four	
			with multiple representations.	sides, both have sides of	
			Generate 'new for old' by identifying	equal length, both have four	
			'nearly numbers'. e.g. 2500 – 999 is nearly	equal angles)	
			2500 -1000 = 1500 (so my answer is	<u>Measure</u>	
			1501).	Convert between capacity	
				measurements (litres and	
				ml)	
D3	Count backwards	Solve a contextual problem that	Multiplication and Division	<u>Measure</u>	
	through zero to include	requires all four operations and	Develop formal methods of short	Use measuring instruments	
	negative numbers.	fractions (perhaps a budget for	multiplication and short division with	accurately, making	
		an end of term party, or a	appropriate models and images alongside	connections between	
		summer holiday, or a recipe	Fractions	measure and number (e.g.	
		(and cost) for a party drink for	Independently identify equivalent	recipes, mixing fruit	
		5, 10, 100 children)	fractions using the multiplicative	cocktails, the perimeter of	
			relationship between the numerator and	the playground)	
			the denominator (e.g.in quarters, the		
			denominator is always four times the		
			numerator)		
END OF YEAR ASSESSMENT AND TRANSITION DIALOGUE (Milestone 4)					
SUMMER HOLIDAYS					

UNIT PLANNING MODEL

Week	Date	Block	Unit	Big ideas, unit objectives, hot and cold tasks with key activities, resources, models and images.				
				(now construct the connected learning journey – link to previous learning)				
1	04-09-17	A1	Geometry					
2	11-09-17	A1	Addition and Subtraction					
3	18-09-17	A1	Addition and Subtraction					
4	25-09-17	A1	Statistics and Measure					
5	02-10-17	B1	Measure					
6	09-10-17	B1	Multiplication and Division					
7	16-10-17	B1	Division and Fractions					
	Milestone 1							
				Half Term				
8	30-10-17	C1	Geometry					
9	06-11-17	C1	Addition and Subtraction					
10	13-11-17	C1	Addition and Subtraction					
11	20-11-17	D1	Statistics and Measure					
12	27-11-17	D1	Fractions					
13	04-12-17	D1	Multiplication and Division					
14	11-12-17	D1	Multiplication and Division					
	Christmas Holiday							

What planning a learning journey looks like!

Identify key tasks ~ plan the journey ~ choose the 'cold task' ~ design the 'hot task'

